Source code for pyspark.mllib.clustering

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from pyspark import SparkContext
from pyspark.mllib.common import callMLlibFunc, callJavaFunc
from pyspark.mllib.linalg import SparseVector, _convert_to_vector

__all__ = ['KMeansModel', 'KMeans']


[docs]class KMeansModel(object): """A clustering model derived from the k-means method. >>> from numpy import array >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2) >>> model = KMeans.train( ... sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random") >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) True >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0])) True >>> model = KMeans.train(sc.parallelize(data), 2) >>> sparse_data = [ ... SparseVector(3, {1: 1.0}), ... SparseVector(3, {1: 1.1}), ... SparseVector(3, {2: 1.0}), ... SparseVector(3, {2: 1.1}) ... ] >>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||") >>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.])) True >>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1])) True >>> model.predict(sparse_data[0]) == model.predict(sparse_data[1]) True >>> model.predict(sparse_data[2]) == model.predict(sparse_data[3]) True >>> type(model.clusterCenters) <type 'list'> """ def __init__(self, centers): self.centers = centers @property
[docs] def clusterCenters(self): """Get the cluster centers, represented as a list of NumPy arrays.""" return self.centers
[docs] def predict(self, x): """Find the cluster to which x belongs in this model.""" best = 0 best_distance = float("inf") x = _convert_to_vector(x) for i in xrange(len(self.centers)): distance = x.squared_distance(self.centers[i]) if distance < best_distance: best = i best_distance = distance return best
[docs]class KMeans(object): @classmethod
[docs] def train(cls, rdd, k, maxIterations=100, runs=1, initializationMode="k-means||"): """Train a k-means clustering model.""" model = callMLlibFunc("trainKMeansModel", rdd.map(_convert_to_vector), k, maxIterations, runs, initializationMode) centers = callJavaFunc(rdd.context, model.clusterCenters) return KMeansModel([c.toArray() for c in centers])
def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()