org.apache.spark.mllib.feature

HashingTF

class HashingTF extends Serializable

:: Experimental :: Maps a sequence of terms to their term frequencies using the hashing trick.

Annotations
@Experimental()
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. HashingTF
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new HashingTF()

  2. new HashingTF(numFeatures: Int)

    numFeatures

    number of features (default: 220)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  13. def indexOf(term: Any): Int

    Returns the index of the input term.

  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  16. final def notify(): Unit

    Definition Classes
    AnyRef
  17. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  18. val numFeatures: Int

    number of features (default: 220)

  19. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  20. def toString(): String

    Definition Classes
    AnyRef → Any
  21. def transform[D <: Iterable[_]](dataset: JavaRDD[D]): JavaRDD[Vector]

    Transforms the input document to term frequency vectors (Java version).

  22. def transform[D <: Iterable[_]](dataset: RDD[D]): RDD[Vector]

    Transforms the input document to term frequency vectors.

  23. def transform(document: Iterable[_]): Vector

    Transforms the input document into a sparse term frequency vector (Java version).

  24. def transform(document: Iterable[_]): Vector

    Transforms the input document into a sparse term frequency vector.

  25. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped