Source code for pyspark.mllib.clustering

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import sys
import array as pyarray

if sys.version > '3':
    xrange = range

from numpy import array

from pyspark import RDD
from pyspark import SparkContext
from pyspark.mllib.common import callMLlibFunc, callJavaFunc, _py2java, _java2py
from pyspark.mllib.linalg import SparseVector, _convert_to_vector
from pyspark.mllib.stat.distribution import MultivariateGaussian
from pyspark.mllib.util import Saveable, Loader, inherit_doc

__all__ = ['KMeansModel', 'KMeans', 'GaussianMixtureModel', 'GaussianMixture']


@inherit_doc
[docs]class KMeansModel(Saveable, Loader): """A clustering model derived from the k-means method. >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) >>> model = KMeans.train( ... sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random", ... seed=50, initializationSteps=5, epsilon=1e-4) >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) True >>> model.predict(array([8.0, 9.0])) == model.predict(array([9.0, 8.0])) True >>> model.k 2 >>> model.computeCost(sc.parallelize(data)) 2.0000000000000004 >>> model = KMeans.train(sc.parallelize(data), 2) >>> sparse_data = [ ... SparseVector(3, {1: 1.0}), ... SparseVector(3, {1: 1.1}), ... SparseVector(3, {2: 1.0}), ... SparseVector(3, {2: 1.1}) ... ] >>> model = KMeans.train(sc.parallelize(sparse_data), 2, initializationMode="k-means||", ... seed=50, initializationSteps=5, epsilon=1e-4) >>> model.predict(array([0., 1., 0.])) == model.predict(array([0, 1.1, 0.])) True >>> model.predict(array([0., 0., 1.])) == model.predict(array([0, 0, 1.1])) True >>> model.predict(sparse_data[0]) == model.predict(sparse_data[1]) True >>> model.predict(sparse_data[2]) == model.predict(sparse_data[3]) True >>> isinstance(model.clusterCenters, list) True >>> import os, tempfile >>> path = tempfile.mkdtemp() >>> model.save(sc, path) >>> sameModel = KMeansModel.load(sc, path) >>> sameModel.predict(sparse_data[0]) == model.predict(sparse_data[0]) True >>> try: ... os.removedirs(path) ... except OSError: ... pass """ def __init__(self, centers): self.centers = centers @property
[docs] def clusterCenters(self): """Get the cluster centers, represented as a list of NumPy arrays.""" return self.centers
@property
[docs] def k(self): """Total number of clusters.""" return len(self.centers)
[docs] def predict(self, x): """Find the cluster to which x belongs in this model.""" best = 0 best_distance = float("inf") x = _convert_to_vector(x) for i in xrange(len(self.centers)): distance = x.squared_distance(self.centers[i]) if distance < best_distance: best = i best_distance = distance return best
[docs] def computeCost(self, rdd): """ Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data. """ cost = callMLlibFunc("computeCostKmeansModel", rdd.map(_convert_to_vector), [_convert_to_vector(c) for c in self.centers]) return cost
[docs] def save(self, sc, path): java_centers = _py2java(sc, [_convert_to_vector(c) for c in self.centers]) java_model = sc._jvm.org.apache.spark.mllib.clustering.KMeansModel(java_centers) java_model.save(sc._jsc.sc(), path)
@classmethod
[docs] def load(cls, sc, path): java_model = sc._jvm.org.apache.spark.mllib.clustering.KMeansModel.load(sc._jsc.sc(), path) return KMeansModel(_java2py(sc, java_model.clusterCenters()))
[docs]class KMeans(object): @classmethod
[docs] def train(cls, rdd, k, maxIterations=100, runs=1, initializationMode="k-means||", seed=None, initializationSteps=5, epsilon=1e-4): """Train a k-means clustering model.""" model = callMLlibFunc("trainKMeansModel", rdd.map(_convert_to_vector), k, maxIterations, runs, initializationMode, seed, initializationSteps, epsilon) centers = callJavaFunc(rdd.context, model.clusterCenters) return KMeansModel([c.toArray() for c in centers])
[docs]class GaussianMixtureModel(object): """A clustering model derived from the Gaussian Mixture Model method. >>> from pyspark.mllib.linalg import Vectors, DenseMatrix >>> clusterdata_1 = sc.parallelize(array([-0.1,-0.05,-0.01,-0.1, ... 0.9,0.8,0.75,0.935, ... -0.83,-0.68,-0.91,-0.76 ]).reshape(6, 2)) >>> model = GaussianMixture.train(clusterdata_1, 3, convergenceTol=0.0001, ... maxIterations=50, seed=10) >>> labels = model.predict(clusterdata_1).collect() >>> labels[0]==labels[1] False >>> labels[1]==labels[2] True >>> labels[4]==labels[5] True >>> data = array([-5.1971, -2.5359, -3.8220, ... -5.2211, -5.0602, 4.7118, ... 6.8989, 3.4592, 4.6322, ... 5.7048, 4.6567, 5.5026, ... 4.5605, 5.2043, 6.2734]) >>> clusterdata_2 = sc.parallelize(data.reshape(5,3)) >>> model = GaussianMixture.train(clusterdata_2, 2, convergenceTol=0.0001, ... maxIterations=150, seed=10) >>> labels = model.predict(clusterdata_2).collect() >>> labels[0]==labels[1]==labels[2] True >>> labels[3]==labels[4] True >>> clusterdata_3 = sc.parallelize(data.reshape(15, 1)) >>> im = GaussianMixtureModel([0.5, 0.5], ... [MultivariateGaussian(Vectors.dense([-1.0]), DenseMatrix(1, 1, [1.0])), ... MultivariateGaussian(Vectors.dense([1.0]), DenseMatrix(1, 1, [1.0]))]) >>> model = GaussianMixture.train(clusterdata_3, 2, initialModel=im) """ def __init__(self, weights, gaussians): self._weights = weights self._gaussians = gaussians self._k = len(self._weights) @property
[docs] def weights(self): """ Weights for each Gaussian distribution in the mixture, where weights[i] is the weight for Gaussian i, and weights.sum == 1. """ return self._weights
@property
[docs] def gaussians(self): """ Array of MultivariateGaussian where gaussians[i] represents the Multivariate Gaussian (Normal) Distribution for Gaussian i. """ return self._gaussians
@property
[docs] def k(self): """Number of gaussians in mixture.""" return self._k
[docs] def predict(self, x): """ Find the cluster to which the points in 'x' has maximum membership in this model. :param x: RDD of data points. :return: cluster_labels. RDD of cluster labels. """ if isinstance(x, RDD): cluster_labels = self.predictSoft(x).map(lambda z: z.index(max(z))) return cluster_labels else: raise TypeError("x should be represented by an RDD, " "but got %s." % type(x))
[docs] def predictSoft(self, x): """ Find the membership of each point in 'x' to all mixture components. :param x: RDD of data points. :return: membership_matrix. RDD of array of double values. """ if isinstance(x, RDD): means, sigmas = zip(*[(g.mu, g.sigma) for g in self._gaussians]) membership_matrix = callMLlibFunc("predictSoftGMM", x.map(_convert_to_vector), _convert_to_vector(self._weights), means, sigmas) return membership_matrix.map(lambda x: pyarray.array('d', x)) else: raise TypeError("x should be represented by an RDD, " "but got %s." % type(x))
[docs]class GaussianMixture(object): """ Learning algorithm for Gaussian Mixtures using the expectation-maximization algorithm. :param data: RDD of data points :param k: Number of components :param convergenceTol: Threshold value to check the convergence criteria. Defaults to 1e-3 :param maxIterations: Number of iterations. Default to 100 :param seed: Random Seed :param initialModel: GaussianMixtureModel for initializing learning """ @classmethod
[docs] def train(cls, rdd, k, convergenceTol=1e-3, maxIterations=100, seed=None, initialModel=None): """Train a Gaussian Mixture clustering model.""" initialModelWeights = None initialModelMu = None initialModelSigma = None if initialModel is not None: if initialModel.k != k: raise Exception("Mismatched cluster count, initialModel.k = %s, however k = %s" % (initialModel.k, k)) initialModelWeights = initialModel.weights initialModelMu = [initialModel.gaussians[i].mu for i in range(initialModel.k)] initialModelSigma = [initialModel.gaussians[i].sigma for i in range(initialModel.k)] weight, mu, sigma = callMLlibFunc("trainGaussianMixture", rdd.map(_convert_to_vector), k, convergenceTol, maxIterations, seed, initialModelWeights, initialModelMu, initialModelSigma) mvg_obj = [MultivariateGaussian(mu[i], sigma[i]) for i in range(k)] return GaussianMixtureModel(weight, mvg_obj)
def _test(): import doctest globs = globals().copy() globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2) (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()