Abstract class for transformers that transform one dataset into another.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Abstract class for estimators that fit models to data.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Abstract class for models that are fitted by estimators.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each of which is either an Estimator or a Transformer. When Pipeline.fit() is called, the stages are executed in order. If a stage is an Estimator, its Estimator.fit() method will be called on the input dataset to fit a model. Then the model, which is a transformer, will be used to transform the dataset as the input to the next stage. If a stage is a Transformer, its Transformer.transform() method will be called to produce the dataset for the next stage. The fitted model from a Pipeline is an PipelineModel, which consists of fitted models and transformers, corresponding to the pipeline stages. If there are no stages, the pipeline acts as an identity transformer.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Get pipeline stages.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets params for Pipeline.
Set pipeline stages.
Parameters: | value – a list of transformers or estimators |
---|---|
Returns: | the pipeline instance |
Represents a compiled pipeline with transformers and fitted models.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Components that take parameters. This also provides an internal param map to store parameter values attached to the instance.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Binarize a column of continuous features given a threshold.
>>> df = sqlContext.createDataFrame([(0.5,)], ["values"])
>>> binarizer = Binarizer(threshold=1.0, inputCol="values", outputCol="features")
>>> binarizer.transform(df).head().features
0.0
>>> binarizer.setParams(outputCol="freqs").transform(df).head().freqs
0.0
>>> params = {binarizer.threshold: -0.5, binarizer.outputCol: "vector"}
>>> binarizer.transform(df, params).head().vector
1.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets params for this Binarizer.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Maps a column of continuous features to a column of feature buckets.
>>> df = sqlContext.createDataFrame([(0.1,), (0.4,), (1.2,), (1.5,)], ["values"])
>>> bucketizer = Bucketizer(splits=[-float("inf"), 0.5, 1.4, float("inf")],
... inputCol="values", outputCol="buckets")
>>> bucketed = bucketizer.transform(df).collect()
>>> bucketed[0].buckets
0.0
>>> bucketed[1].buckets
0.0
>>> bucketed[2].buckets
1.0
>>> bucketed[3].buckets
2.0
>>> bucketizer.setParams(outputCol="b").transform(df).head().b
0.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets params for this Bucketizer.
param for Splitting points for mapping continuous features into buckets. With n+1 splits,
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a provided “weight” vector. In other words, it scales each column of the dataset by a scalar multiplier.
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([2.0, 1.0, 3.0]),)], ["values"])
>>> ep = ElementwiseProduct(scalingVec=Vectors.dense([1.0, 2.0, 3.0]),
... inputCol="values", outputCol="eprod")
>>> ep.transform(df).head().eprod
DenseVector([2.0, 2.0, 9.0])
>>> ep.setParams(scalingVec=Vectors.dense([2.0, 3.0, 5.0])).transform(df).head().eprod
DenseVector([4.0, 3.0, 15.0])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets params for this ElementwiseProduct.
Sets the value of scalingVec.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Maps a sequence of terms to their term frequencies using the hashing trick.
>>> df = sqlContext.createDataFrame([(["a", "b", "c"],)], ["words"])
>>> hashingTF = HashingTF(numFeatures=10, inputCol="words", outputCol="features")
>>> hashingTF.transform(df).head().features
SparseVector(10, {7: 1.0, 8: 1.0, 9: 1.0})
>>> hashingTF.setParams(outputCol="freqs").transform(df).head().freqs
SparseVector(10, {7: 1.0, 8: 1.0, 9: 1.0})
>>> params = {hashingTF.numFeatures: 5, hashingTF.outputCol: "vector"}
>>> hashingTF.transform(df, params).head().vector
SparseVector(5, {2: 1.0, 3: 1.0, 4: 1.0})
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of numFeatures or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of numFeatures.
Sets params for this HashingTF.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Compute the Inverse Document Frequency (IDF) given a collection of documents.
>>> from pyspark.mllib.linalg import DenseVector
>>> df = sqlContext.createDataFrame([(DenseVector([1.0, 2.0]),),
... (DenseVector([0.0, 1.0]),), (DenseVector([3.0, 0.2]),)], ["tf"])
>>> idf = IDF(minDocFreq=3, inputCol="tf", outputCol="idf")
>>> idf.fit(df).transform(df).head().idf
DenseVector([0.0, 0.0])
>>> idf.setParams(outputCol="freqs").fit(df).transform(df).collect()[1].freqs
DenseVector([0.0, 0.0])
>>> params = {idf.minDocFreq: 1, idf.outputCol: "vector"}
>>> idf.fit(df, params).transform(df).head().vector
DenseVector([0.2877, 0.0])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of minDocFreq.
Model fitted by IDF.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
A feature transformer that converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words. When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned.
>>> df = sqlContext.createDataFrame([Row(inputTokens=["a", "b", "c", "d", "e"])])
>>> ngram = NGram(n=2, inputCol="inputTokens", outputCol="nGrams")
>>> ngram.transform(df).head()
Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], nGrams=[u'a b', u'b c', u'c d', u'd e'])
>>> # Change n-gram length
>>> ngram.setParams(n=4).transform(df).head()
Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], nGrams=[u'a b c d', u'b c d e'])
>>> # Temporarily modify output column.
>>> ngram.transform(df, {ngram.outputCol: "output"}).head()
Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], output=[u'a b c d', u'b c d e'])
>>> ngram.transform(df).head()
Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], nGrams=[u'a b c d', u'b c d e'])
>>> # Must use keyword arguments to specify params.
>>> ngram.setParams("text")
Traceback (most recent call last):
...
TypeError: Method setParams forces keyword arguments.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Normalize a vector to have unit norm using the given p-norm.
>>> from pyspark.mllib.linalg import Vectors
>>> svec = Vectors.sparse(4, {1: 4.0, 3: 3.0})
>>> df = sqlContext.createDataFrame([(Vectors.dense([3.0, -4.0]), svec)], ["dense", "sparse"])
>>> normalizer = Normalizer(p=2.0, inputCol="dense", outputCol="features")
>>> normalizer.transform(df).head().features
DenseVector([0.6, -0.8])
>>> normalizer.setParams(inputCol="sparse", outputCol="freqs").transform(df).head().freqs
SparseVector(4, {1: 0.8, 3: 0.6})
>>> params = {normalizer.p: 1.0, normalizer.inputCol: "dense", normalizer.outputCol: "vector"}
>>> normalizer.transform(df, params).head().vector
DenseVector([0.4286, -0.5714])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
A one-hot encoder that maps a column of category indices to a column of binary vectors, with at most a single one-value per row that indicates the input category index. For example with 5 categories, an input value of 2.0 would map to an output vector of [0.0, 0.0, 1.0, 0.0]. The last category is not included by default (configurable via dropLast) because it makes the vector entries sum up to one, and hence linearly dependent. So an input value of 4.0 maps to [0.0, 0.0, 0.0, 0.0]. Note that this is different from scikit-learn’s OneHotEncoder, which keeps all categories. The output vectors are sparse.
See also
StringIndexer for converting categorical values into category indices
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> model = stringIndexer.fit(stringIndDf)
>>> td = model.transform(stringIndDf)
>>> encoder = OneHotEncoder(inputCol="indexed", outputCol="features")
>>> encoder.transform(td).head().features
SparseVector(2, {0: 1.0})
>>> encoder.setParams(outputCol="freqs").transform(td).head().freqs
SparseVector(2, {0: 1.0})
>>> params = {encoder.dropLast: False, encoder.outputCol: "test"}
>>> encoder.transform(td, params).head().test
SparseVector(3, {0: 1.0})
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets params for this OneHotEncoder.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Perform feature expansion in a polynomial space. As said in wikipedia of Polynomial Expansion, which is available at http://en.wikipedia.org/wiki/Polynomial_expansion, “In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition”. Take a 2-variable feature vector as an example: (x, y), if we want to expand it with degree 2, then we get (x, x * x, y, x * y, y * y).
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([0.5, 2.0]),)], ["dense"])
>>> px = PolynomialExpansion(degree=2, inputCol="dense", outputCol="expanded")
>>> px.transform(df).head().expanded
DenseVector([0.5, 0.25, 2.0, 1.0, 4.0])
>>> px.setParams(outputCol="test").transform(df).head().test
DenseVector([0.5, 0.25, 2.0, 1.0, 4.0])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets params for this PolynomialExpansion.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
A regex based tokenizer that extracts tokens either by using the provided regex pattern (in Java dialect) to split the text (default) or repeatedly matching the regex (if gaps is false). Optional parameters also allow filtering tokens using a minimal length. It returns an array of strings that can be empty.
>>> df = sqlContext.createDataFrame([("a b c",)], ["text"])
>>> reTokenizer = RegexTokenizer(inputCol="text", outputCol="words")
>>> reTokenizer.transform(df).head()
Row(text=u'a b c', words=[u'a', u'b', u'c'])
>>> # Change a parameter.
>>> reTokenizer.setParams(outputCol="tokens").transform(df).head()
Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
>>> # Temporarily modify a parameter.
>>> reTokenizer.transform(df, {reTokenizer.outputCol: "words"}).head()
Row(text=u'a b c', words=[u'a', u'b', u'c'])
>>> reTokenizer.transform(df).head()
Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
>>> # Must use keyword arguments to specify params.
>>> reTokenizer.setParams("text")
Traceback (most recent call last):
...
TypeError: Method setParams forces keyword arguments.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of minTokenLength.
Sets params for this RegexTokenizer.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"])
>>> standardScaler = StandardScaler(inputCol="a", outputCol="scaled")
>>> model = standardScaler.fit(df)
>>> model.mean
DenseVector([1.0])
>>> model.std
DenseVector([1.4142])
>>> model.transform(df).collect()[1].scaled
DenseVector([1.4142])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets params for this StandardScaler.
Model fitted by StandardScaler.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
A label indexer that maps a string column of labels to an ML column of label indices. If the input column is numeric, we cast it to string and index the string values. The indices are in [0, numLabels), ordered by label frequencies. So the most frequent label gets index 0.
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> model = stringIndexer.fit(stringIndDf)
>>> td = model.transform(stringIndDf)
>>> sorted(set([(i[0], i[1]) for i in td.select(td.id, td.indexed).collect()]),
... key=lambda x: x[0])
[(0, 0.0), (1, 2.0), (2, 1.0), (3, 0.0), (4, 0.0), (5, 1.0)]
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Model fitted by StringIndexer.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
A tokenizer that converts the input string to lowercase and then splits it by white spaces.
>>> df = sqlContext.createDataFrame([("a b c",)], ["text"])
>>> tokenizer = Tokenizer(inputCol="text", outputCol="words")
>>> tokenizer.transform(df).head()
Row(text=u'a b c', words=[u'a', u'b', u'c'])
>>> # Change a parameter.
>>> tokenizer.setParams(outputCol="tokens").transform(df).head()
Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
>>> # Temporarily modify a parameter.
>>> tokenizer.transform(df, {tokenizer.outputCol: "words"}).head()
Row(text=u'a b c', words=[u'a', u'b', u'c'])
>>> tokenizer.transform(df).head()
Row(text=u'a b c', tokens=[u'a', u'b', u'c'])
>>> # Must use keyword arguments to specify params.
>>> tokenizer.setParams("text")
Traceback (most recent call last):
...
TypeError: Method setParams forces keyword arguments.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
A feature transformer that merges multiple columns into a vector column.
>>> df = sqlContext.createDataFrame([(1, 0, 3)], ["a", "b", "c"])
>>> vecAssembler = VectorAssembler(inputCols=["a", "b", "c"], outputCol="features")
>>> vecAssembler.transform(df).head().features
DenseVector([1.0, 0.0, 3.0])
>>> vecAssembler.setParams(outputCol="freqs").transform(df).head().freqs
DenseVector([1.0, 0.0, 3.0])
>>> params = {vecAssembler.inputCols: ["b", "a"], vecAssembler.outputCol: "vector"}
>>> vecAssembler.transform(df, params).head().vector
DenseVector([0.0, 1.0])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of inputCols or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Class for indexing categorical feature columns in a dataset of [[Vector]].
- Automatically identify categorical features (default behavior)
- This helps process a dataset of unknown vectors into a dataset with some continuous features and some categorical features. The choice between continuous and categorical is based upon a maxCategories parameter.
- Set maxCategories to the maximum number of categorical any categorical feature should have.
- E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}. If maxCategories = 2, then feature 0 will be declared categorical and use indices {0, 1}, and feature 1 will be declared continuous.
- Index all features, if all features are categorical
- If maxCategories is set to be very large, then this will build an index of unique values for all features.
- Warning: This can cause problems if features are continuous since this will collect ALL unique values to the driver.
- E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}. If maxCategories >= 3, then both features will be declared categorical.
This returns a model which can transform categorical features to use 0-based indices.
- This is not guaranteed to choose the same category index across multiple runs.
- If a categorical feature includes value 0, then this is guaranteed to map value 0 to index 0. This maintains vector sparsity.
- More stability may be added in the future.
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([(Vectors.dense([-1.0, 0.0]),),
... (Vectors.dense([0.0, 1.0]),), (Vectors.dense([0.0, 2.0]),)], ["a"])
>>> indexer = VectorIndexer(maxCategories=2, inputCol="a", outputCol="indexed")
>>> model = indexer.fit(df)
>>> model.transform(df).head().indexed
DenseVector([1.0, 0.0])
>>> indexer.setParams(outputCol="test").fit(df).transform(df).collect()[1].test
DenseVector([0.0, 1.0])
>>> params = {indexer.maxCategories: 3, indexer.outputCol: "vector"}
>>> model2 = indexer.fit(df, params)
>>> model2.transform(df).head().vector
DenseVector([1.0, 0.0])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of maxCategories.
Word2Vec trains a model of Map(String, Vector), i.e. transforms a word into a code for further natural language processing or machine learning process.
>>> sent = ("a b " * 100 + "a c " * 10).split(" ")
>>> doc = sqlContext.createDataFrame([(sent,), (sent,)], ["sentence"])
>>> model = Word2Vec(vectorSize=5, seed=42, inputCol="sentence", outputCol="model").fit(doc)
>>> model.getVectors().show()
+----+--------------------+
|word| vector|
+----+--------------------+
| a|[-0.3511952459812...|
| b|[0.29077222943305...|
| c|[0.02315592765808...|
+----+--------------------+
...
>>> model.findSynonyms("a", 2).show()
+----+-------------------+
|word| similarity|
+----+-------------------+
| b|0.29255685145799626|
| c|-0.5414068302988307|
+----+-------------------+
...
>>> model.transform(doc).head().model
DenseVector([-0.0422, -0.5138, -0.2546, 0.6885, 0.276])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of inputCol or its default value.
Gets the value of maxIter or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Gets the value of seed or its default value.
Gets the value of stepSize or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of numPartitions.
Sets params for this Word2Vec.
Sets the value of vectorSize.
Model fitted by Word2Vec.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Find “num” number of words closest in similarity to “word”. word can be a string or vector representation. Returns a dataframe with two fields word and similarity (which gives the cosine similarity).
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Returns the vector representation of the words as a dataframe with two fields, word and vector.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
PCA trains a model to project vectors to a low-dimensional space using PCA.
>>> from pyspark.mllib.linalg import Vectors
>>> data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
... (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
... (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
>>> df = sqlContext.createDataFrame(data,["features"])
>>> pca = PCA(k=2, inputCol="features", outputCol="pca_features")
>>> model = pca.fit(df)
>>> model.transform(df).collect()[0].pca_features
DenseVector([1.648..., -4.013...])
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of inputCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets the value of outputCol or its default value.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Model fitted by PCA.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Note
Experimental
Implements the transforms required for fitting a dataset against an R model formula. Currently we support a limited subset of the R operators, including ‘~’, ‘+’, ‘-‘, and ‘.’. Also see the R formula docs: http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html
>>> df = sqlContext.createDataFrame([
... (1.0, 1.0, "a"),
... (0.0, 2.0, "b"),
... (0.0, 0.0, "a")
... ], ["y", "x", "s"])
>>> rf = RFormula(formula="y ~ x + s")
>>> rf.fit(df).transform(df).show()
+---+---+---+---------+-----+
| y| x| s| features|label|
+---+---+---+---------+-----+
|1.0|1.0| a|[1.0,1.0]| 1.0|
|0.0|2.0| b|[2.0,0.0]| 0.0|
|0.0|0.0| a|[0.0,1.0]| 0.0|
+---+---+---+---------+-----+
...
>>> rf.fit(df, {rf.formula: "y ~ . - s"}).transform(df).show()
+---+---+---+--------+-----+
| y| x| s|features|label|
+---+---+---+--------+-----+
|1.0|1.0| a| [1.0]| 1.0|
|0.0|2.0| b| [2.0]| 0.0|
|0.0|0.0| a| [0.0]| 0.0|
+---+---+---+--------+-----+
...
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of featuresCol.
Model fitted by RFormula.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Logistic regression. Currently, this class only supports binary classification.
>>> from pyspark.sql import Row
>>> from pyspark.mllib.linalg import Vectors
>>> df = sc.parallelize([
... Row(label=1.0, features=Vectors.dense(1.0)),
... Row(label=0.0, features=Vectors.sparse(1, [], []))]).toDF()
>>> lr = LogisticRegression(maxIter=5, regParam=0.01)
>>> model = lr.fit(df)
>>> model.weights
DenseVector([5.5...])
>>> model.intercept
-2.68...
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF()
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> result.probability
DenseVector([0.99..., 0.00...])
>>> result.rawPrediction
DenseVector([8.22..., -8.22...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(1, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
1.0
>>> lr.setParams("vector")
Traceback (most recent call last):
...
TypeError: Method setParams forces keyword arguments.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
param for the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
param for whether to fit an intercept term.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxIter or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of probabilityCol or its default value.
Gets the value of rawPredictionCol or its default value.
Gets the value of regParam or its default value.
If thresholds is set, return its value. Otherwise, if threshold is set, return the equivalent thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an error.
Gets the value of tol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of elasticNetParam.
Sets the value of featuresCol.
Sets the value of fitIntercept.
Sets params for logistic regression. If the threshold and thresholds Params are both set, they must be equivalent.
Sets the value of predictionCol.
Sets the value of probabilityCol.
Sets the value of rawPredictionCol.
Sets the value of threshold. Clears value of thresholds if it has been set.
Sets the value of thresholds. Clears value of threshold if it has been set.
param for threshold in binary classification, in range [0, 1].
param for thresholds or cutoffs in binary or multiclass classification
Model fitted by LogisticRegression.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree learning algorithm for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.
>>> from pyspark.mllib.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed")
>>> model = dt.fit(td)
>>> model.numNodes
3
>>> model.depth
1
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> result.probability
DenseVector([1.0, 0.0])
>>> result.rawPrediction
DenseVector([1.0, 0.0])
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of cacheNodeIds or its default value.
Gets the value of checkpointInterval or its default value.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxBins or its default value.
Gets the value of maxDepth or its default value.
Gets the value of maxMemoryInMB or its default value.
Gets the value of minInfoGain or its default value.
Gets the value of minInstancesPerNode or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of probabilityCol or its default value.
Gets the value of rawPredictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
param for Criterion used for information gain calculation (case-insensitive).
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of cacheNodeIds.
Sets the value of checkpointInterval.
Sets the value of featuresCol.
Sets the value of maxMemoryInMB.
Sets the value of minInfoGain.
Sets the value of minInstancesPerNode.
Sets params for the DecisionTreeClassifier.
Sets the value of predictionCol.
Sets the value of probabilityCol.
Sets the value of rawPredictionCol.
Model fitted by DecisionTreeClassifier.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Return depth of the decision tree.
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Return number of nodes of the decision tree.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
http://en.wikipedia.org/wiki/Gradient_boosting Gradient-Boosted Trees (GBTs) learning algorithm for classification. It supports binary labels, as well as both continuous and categorical features. Note: Multiclass labels are not currently supported.
>>> from numpy import allclose
>>> from pyspark.mllib.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed")
>>> model = gbt.fit(td)
>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
True
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of cacheNodeIds or its default value.
Gets the value of checkpointInterval or its default value.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxBins or its default value.
Gets the value of maxDepth or its default value.
Gets the value of maxIter or its default value.
Gets the value of maxMemoryInMB or its default value.
Gets the value of minInfoGain or its default value.
Gets the value of minInstancesPerNode or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
param for Loss function which GBT tries to minimize (case-insensitive).
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of cacheNodeIds.
Sets the value of checkpointInterval.
Sets the value of featuresCol.
Sets the value of maxMemoryInMB.
Sets the value of minInfoGain.
Sets the value of minInstancesPerNode.
Sets params for Gradient Boosted Tree Classification.
Sets the value of predictionCol.
Sets the value of subsamplingRate.
Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of
Fraction of the training data used for learning each decision tree, in range (0, 1].
Model fitted by GBTClassifier.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Return the weights for each tree
http://en.wikipedia.org/wiki/Random_forest Random Forest learning algorithm for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.
>>> import numpy
>>> from numpy import allclose
>>> from pyspark.mllib.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="indexed", seed=42)
>>> model = rf.fit(td)
>>> allclose(model.treeWeights, [1.0, 1.0, 1.0])
True
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> numpy.argmax(result.probability)
0
>>> numpy.argmax(result.rawPrediction)
0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
param for The number of features to consider for splits at each tree node
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of cacheNodeIds or its default value.
Gets the value of checkpointInterval or its default value.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxBins or its default value.
Gets the value of maxDepth or its default value.
Gets the value of maxMemoryInMB or its default value.
Gets the value of minInfoGain or its default value.
Gets the value of minInstancesPerNode or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of probabilityCol or its default value.
Gets the value of rawPredictionCol or its default value.
Gets the value of seed or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
param for Criterion used for information gain calculation (case-insensitive).
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
param for Number of trees to train (>= 1)
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of cacheNodeIds.
Sets the value of checkpointInterval.
Sets the value of featureSubsetStrategy.
Sets the value of featuresCol.
Sets the value of maxMemoryInMB.
Sets the value of minInfoGain.
Sets the value of minInstancesPerNode.
Sets params for linear classification.
Sets the value of predictionCol.
Sets the value of probabilityCol.
Sets the value of rawPredictionCol.
Sets the value of subsamplingRate.
param for Fraction of the training data used for learning each decision tree,
Model fitted by RandomForestClassifier.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Return the weights for each tree
Naive Bayes Classifiers. It supports both Multinomial and Bernoulli NB. Multinomial NB (http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html) can handle finitely supported discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a binary (0/1) data, it can also be used as Bernoulli NB (http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html). The input feature values must be nonnegative.
>>> from pyspark.sql import Row
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([
... Row(label=0.0, features=Vectors.dense([0.0, 0.0])),
... Row(label=0.0, features=Vectors.dense([0.0, 1.0])),
... Row(label=1.0, features=Vectors.dense([1.0, 0.0]))])
>>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial")
>>> model = nb.fit(df)
>>> model.pi
DenseVector([-0.51..., -0.91...])
>>> model.theta
DenseMatrix(2, 2, [-1.09..., -0.40..., -0.40..., -1.09...], 1)
>>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).toDF()
>>> result = model.transform(test0).head()
>>> result.prediction
1.0
>>> result.probability
DenseVector([0.42..., 0.57...])
>>> result.rawPrediction
DenseVector([-1.60..., -1.32...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
1.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of probabilityCol or its default value.
Gets the value of rawPredictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
param for the model type.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of featuresCol.
Sets params for Naive Bayes.
Sets the value of predictionCol.
Sets the value of probabilityCol.
Sets the value of rawPredictionCol.
param for the smoothing parameter.
Model fitted by NaiveBayes.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
K-means clustering with support for multiple parallel runs and a k-means++ like initialization mode (the k-means|| algorithm by Bahmani et al). When multiple concurrent runs are requested, they are executed together with joint passes over the data for efficiency.
>>> from pyspark.mllib.linalg import Vectors
>>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),),
... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)]
>>> df = sqlContext.createDataFrame(data, ["features"])
>>> kmeans = KMeans(k=2, seed=1)
>>> model = kmeans.fit(df)
>>> centers = model.clusterCenters()
>>> len(centers)
2
>>> transformed = model.transform(df).select("features", "prediction")
>>> rows = transformed.collect()
>>> rows[0].prediction == rows[1].prediction
True
>>> rows[2].prediction == rows[3].prediction
True
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of featuresCol or its default value.
Gets the value of maxIter or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of seed or its default value.
Gets the value of tol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of featuresCol.
Sets the value of initMode.
>>> algo = KMeans()
>>> algo.getInitMode()
'k-means||'
>>> algo = algo.setInitMode("random")
>>> algo.getInitMode()
'random'
Sets the value of initSteps.
>>> algo = KMeans().setInitSteps(10)
>>> algo.getInitSteps()
10
Sets params for KMeans.
Sets the value of predictionCol.
Model fitted by KMeans.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Alternating Least Squares (ALS) matrix factorization.
ALS attempts to estimate the ratings matrix R as the product of two lower-rank matrices, X and Y, i.e. X * Yt = R. Typically these approximations are called ‘factor’ matrices. The general approach is iterative. During each iteration, one of the factor matrices is held constant, while the other is solved for using least squares. The newly-solved factor matrix is then held constant while solving for the other factor matrix.
This is a blocked implementation of the ALS factorization algorithm that groups the two sets of factors (referred to as “users” and “products”) into blocks and reduces communication by only sending one copy of each user vector to each product block on each iteration, and only for the product blocks that need that user’s feature vector. This is achieved by pre-computing some information about the ratings matrix to determine the “out-links” of each user (which blocks of products it will contribute to) and “in-link” information for each product (which of the feature vectors it receives from each user block it will depend on). This allows us to send only an array of feature vectors between each user block and product block, and have the product block find the users’ ratings and update the products based on these messages.
For implicit preference data, the algorithm used is based on “Collaborative Filtering for Implicit Feedback Datasets”, available at http://dx.doi.org/10.1109/ICDM.2008.22, adapted for the blocked approach used here.
Essentially instead of finding the low-rank approximations to the rating matrix R, this finds the approximations for a preference matrix P where the elements of P are 1 if r > 0 and 0 if r <= 0. The ratings then act as ‘confidence’ values related to strength of indicated user preferences rather than explicit ratings given to items.
>>> df = sqlContext.createDataFrame(
... [(0, 0, 4.0), (0, 1, 2.0), (1, 1, 3.0), (1, 2, 4.0), (2, 1, 1.0), (2, 2, 5.0)],
... ["user", "item", "rating"])
>>> als = ALS(rank=10, maxIter=5)
>>> model = als.fit(df)
>>> model.rank
10
>>> model.userFactors.orderBy("id").collect()
[Row(id=0, features=[...]), Row(id=1, ...), Row(id=2, ...)]
>>> test = sqlContext.createDataFrame([(0, 2), (1, 0), (2, 0)], ["user", "item"])
>>> predictions = sorted(model.transform(test).collect(), key=lambda r: r[0])
>>> predictions[0]
Row(user=0, item=2, prediction=0.39...)
>>> predictions[1]
Row(user=1, item=0, prediction=3.19...)
>>> predictions[2]
Row(user=2, item=0, prediction=-1.15...)
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of checkpointInterval or its default value.
Gets the value of maxIter or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of regParam or its default value.
Gets the value of seed or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of checkpointInterval.
Sets the value of implicitPrefs.
Sets the value of nonnegative.
Sets both numUserBlocks and numItemBlocks to the specific value.
Sets the value of numItemBlocks.
Sets the value of numUserBlocks.
Sets params for ALS.
Sets the value of predictionCol.
Model fitted by ALS.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree learning algorithm for regression. It supports both continuous and categorical features.
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> dt = DecisionTreeRegressor(maxDepth=2)
>>> model = dt.fit(df)
>>> model.depth
1
>>> model.numNodes
3
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of cacheNodeIds or its default value.
Gets the value of checkpointInterval or its default value.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxBins or its default value.
Gets the value of maxDepth or its default value.
Gets the value of maxMemoryInMB or its default value.
Gets the value of minInfoGain or its default value.
Gets the value of minInstancesPerNode or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
param for Criterion used for information gain calculation (case-insensitive).
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of cacheNodeIds.
Sets the value of checkpointInterval.
Sets the value of featuresCol.
Sets the value of maxMemoryInMB.
Sets the value of minInfoGain.
Sets the value of minInstancesPerNode.
Sets params for the DecisionTreeRegressor.
Sets the value of predictionCol.
Model fitted by DecisionTreeRegressor.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Return depth of the decision tree.
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Return number of nodes of the decision tree.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
http://en.wikipedia.org/wiki/Gradient_boosting Gradient-Boosted Trees (GBTs) learning algorithm for regression. It supports both continuous and categorical features.
>>> from numpy import allclose
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> gbt = GBTRegressor(maxIter=5, maxDepth=2)
>>> model = gbt.fit(df)
>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
True
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of cacheNodeIds or its default value.
Gets the value of checkpointInterval or its default value.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxBins or its default value.
Gets the value of maxDepth or its default value.
Gets the value of maxIter or its default value.
Gets the value of maxMemoryInMB or its default value.
Gets the value of minInfoGain or its default value.
Gets the value of minInstancesPerNode or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
param for Loss function which GBT tries to minimize (case-insensitive).
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of cacheNodeIds.
Sets the value of checkpointInterval.
Sets the value of featuresCol.
Sets the value of maxMemoryInMB.
Sets the value of minInfoGain.
Sets the value of minInstancesPerNode.
Sets params for Gradient Boosted Tree Regression.
Sets the value of predictionCol.
Sets the value of subsamplingRate.
Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of
Fraction of the training data used for learning each decision tree, in range (0, 1].
Model fitted by GBTRegressor.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Return the weights for each tree
Linear regression.
The learning objective is to minimize the squared error, with regularization. The specific squared error loss function used is: L = 1/2n ||A weights - y||^2^
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> lr = LinearRegression(maxIter=5, regParam=0.0)
>>> model = lr.fit(df)
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
-1.0
>>> model.weights
DenseVector([1.0])
>>> model.intercept
0.0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
>>> lr.setParams("vector")
Traceback (most recent call last):
...
TypeError: Method setParams forces keyword arguments.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
param for the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxIter or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of regParam or its default value.
Gets the value of tol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of elasticNetParam.
Sets the value of featuresCol.
Sets params for linear regression.
Sets the value of predictionCol.
Model fitted by LinearRegression.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
http://en.wikipedia.org/wiki/Random_forest Random Forest learning algorithm for regression. It supports both continuous and categorical features.
>>> from numpy import allclose
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> rf = RandomForestRegressor(numTrees=2, maxDepth=2, seed=42)
>>> model = rf.fit(df)
>>> allclose(model.treeWeights, [1.0, 1.0])
True
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
0.5
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
param for The number of features to consider for splits at each tree node
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of cacheNodeIds or its default value.
Gets the value of checkpointInterval or its default value.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
Gets the value of maxBins or its default value.
Gets the value of maxDepth or its default value.
Gets the value of maxMemoryInMB or its default value.
Gets the value of minInfoGain or its default value.
Gets the value of minInstancesPerNode or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Gets the value of seed or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
param for Criterion used for information gain calculation (case-insensitive).
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
param for Number of trees to train (>= 1)
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of cacheNodeIds.
Sets the value of checkpointInterval.
Sets the value of featureSubsetStrategy.
Sets the value of featuresCol.
Sets the value of maxMemoryInMB.
Sets the value of minInfoGain.
Sets the value of minInstancesPerNode.
Sets params for linear regression.
Sets the value of predictionCol.
Sets the value of subsamplingRate.
param for Fraction of the training data used for learning each decision tree,
Model fitted by RandomForestRegressor.
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java model with extra params. So both the Python wrapper and the Java model get copied.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Return the weights for each tree
Builder for a param grid used in grid search-based model selection.
>>> from pyspark.ml.classification import LogisticRegression
>>> lr = LogisticRegression()
>>> output = ParamGridBuilder() \
... .baseOn({lr.labelCol: 'l'}) \
... .baseOn([lr.predictionCol, 'p']) \
... .addGrid(lr.regParam, [1.0, 2.0]) \
... .addGrid(lr.maxIter, [1, 5]) \
... .build()
>>> expected = [
... {lr.regParam: 1.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'},
... {lr.regParam: 2.0, lr.maxIter: 1, lr.labelCol: 'l', lr.predictionCol: 'p'},
... {lr.regParam: 1.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'},
... {lr.regParam: 2.0, lr.maxIter: 5, lr.labelCol: 'l', lr.predictionCol: 'p'}]
>>> len(output) == len(expected)
True
>>> all([m in expected for m in output])
True
K-fold cross validation.
>>> from pyspark.ml.classification import LogisticRegression
>>> from pyspark.ml.evaluation import BinaryClassificationEvaluator
>>> from pyspark.mllib.linalg import Vectors
>>> dataset = sqlContext.createDataFrame(
... [(Vectors.dense([0.0]), 0.0),
... (Vectors.dense([0.4]), 1.0),
... (Vectors.dense([0.5]), 0.0),
... (Vectors.dense([0.6]), 1.0),
... (Vectors.dense([1.0]), 1.0)] * 10,
... ["features", "label"])
>>> lr = LogisticRegression()
>>> grid = ParamGridBuilder().addGrid(lr.maxIter, [0, 1]).build()
>>> evaluator = BinaryClassificationEvaluator()
>>> cv = CrossValidator(estimator=lr, estimatorParamMaps=grid, evaluator=evaluator)
>>> cvModel = cv.fit(dataset)
>>> evaluator.evaluate(cvModel.transform(dataset))
0.8333...
param for estimator to be cross-validated
param for estimator param maps
param for the evaluator used to select hyper-parameters that maximize the cross-validated metric
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Fits a model to the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | fitted model(s) |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
param for number of folds for cross validation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of estimatorParamMaps.
Model from k-fold cross validation.
best model from cross validation
Creates a copy of this instance with a randomly generated uid and some extra params. This copies the underlying bestModel, creates a deep copy of the embedded paramMap, and copies the embedded and extra parameters over.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Transforms the input dataset with optional parameters.
Parameters: |
|
---|---|
Returns: | transformed dataset |
Base class for evaluators that compute metrics from predictions.
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Evaluates the output with optional parameters.
Parameters: |
|
---|---|
Returns: | metric |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by evaluate() should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Evaluator for binary classification, which expects two input columns: rawPrediction and label.
>>> from pyspark.mllib.linalg import Vectors
>>> scoreAndLabels = map(lambda x: (Vectors.dense([1.0 - x[0], x[0]]), x[1]),
... [(0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)])
>>> dataset = sqlContext.createDataFrame(scoreAndLabels, ["raw", "label"])
...
>>> evaluator = BinaryClassificationEvaluator(rawPredictionCol="raw")
>>> evaluator.evaluate(dataset)
0.70...
>>> evaluator.evaluate(dataset, {evaluator.metricName: "areaUnderPR"})
0.83...
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Evaluates the output with optional parameters.
Parameters: |
|
---|---|
Returns: | metric |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of labelCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of rawPredictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by evaluate() should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.
Checks whether a param is explicitly set by user.
param for metric name in evaluation (areaUnderROC|areaUnderPR)
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of metricName.
Sets params for binary classification evaluator.
Sets the value of rawPredictionCol.
Evaluator for Regression, which expects two input columns: prediction and label.
>>> scoreAndLabels = [(-28.98343821, -27.0), (20.21491975, 21.5),
... (-25.98418959, -22.0), (30.69731842, 33.0), (74.69283752, 71.0)]
>>> dataset = sqlContext.createDataFrame(scoreAndLabels, ["raw", "label"])
...
>>> evaluator = RegressionEvaluator(predictionCol="raw")
>>> evaluator.evaluate(dataset)
2.842...
>>> evaluator.evaluate(dataset, {evaluator.metricName: "r2"})
0.993...
>>> evaluator.evaluate(dataset, {evaluator.metricName: "mae"})
2.649...
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Evaluates the output with optional parameters.
Parameters: |
|
---|---|
Returns: | metric |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of labelCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by evaluate() should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.
Checks whether a param is explicitly set by user.
param for metric name in evaluation (mse|rmse|r2|mae)
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of metricName.
Sets params for regression evaluator.
Sets the value of predictionCol.
Evaluator for Multiclass Classification, which expects two input columns: prediction and label. >>> scoreAndLabels = [(0.0, 0.0), (0.0, 1.0), (0.0, 0.0), ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)] >>> dataset = sqlContext.createDataFrame(scoreAndLabels, [“prediction”, “label”]) ... >>> evaluator = MulticlassClassificationEvaluator(predictionCol=”prediction”) >>> evaluator.evaluate(dataset) 0.66... >>> evaluator.evaluate(dataset, {evaluator.metricName: “precision”}) 0.66... >>> evaluator.evaluate(dataset, {evaluator.metricName: “recall”}) 0.66...
Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.
Parameters: | extra – Extra parameters to copy to the new instance |
---|---|
Returns: | Copy of this instance |
Evaluates the output with optional parameters.
Parameters: |
|
---|---|
Returns: | metric |
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Parameters: | extra – extra param values |
---|---|
Returns: | merged param map |
Gets the value of labelCol or its default value.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Gets a param by its name.
Gets the value of predictionCol or its default value.
Checks whether a param has a default value.
Tests whether this instance contains a param with a given (string) name.
Checks whether a param is explicitly set by user or has a default value.
Indicates whether the metric returned by evaluate() should be maximized (True, default) or minimized (False). A given evaluator may support multiple metrics which may be maximized or minimized.
Checks whether a param is explicitly set by user.
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
Sets the value of metricName.
Sets params for multiclass classification evaluator.
Sets the value of predictionCol.