Old Migration Guides - MLlib

The migration guide for the current Spark version is kept on the MLlib Guide main page.

From 1.5 to 1.6

There are no breaking API changes in the spark.mllib or spark.ml packages, but there are deprecations and changes of behavior.

Deprecations:

Changes of behavior:

From 1.4 to 1.5

In the spark.mllib package, there are no breaking API changes but several behavior changes:

In the spark.ml package, there exists one breaking API change and one behavior change:

From 1.3 to 1.4

In the spark.mllib package, there were several breaking changes, but all in DeveloperApi or Experimental APIs:

In the spark.ml package, several major API changes occurred, including:

Since the spark.ml API was an alpha component in Spark 1.3, we do not list all changes here. However, since 1.4 spark.ml is no longer an alpha component, we will provide details on any API changes for future releases.

From 1.2 to 1.3

In the spark.mllib package, there were several breaking changes. The first change (in ALS) is the only one in a component not marked as Alpha or Experimental.

In the spark.ml package, the main API changes are from Spark SQL. We list the most important changes here:

Other changes were in LogisticRegression:

From 1.1 to 1.2

The only API changes in MLlib v1.2 are in DecisionTree, which continues to be an experimental API in MLlib 1.2:

  1. (Breaking change) The Scala API for classification takes a named argument specifying the number of classes. In MLlib v1.1, this argument was called numClasses in Python and numClassesForClassification in Scala. In MLlib v1.2, the names are both set to numClasses. This numClasses parameter is specified either via Strategy or via DecisionTree static trainClassifier and trainRegressor methods.

  2. (Breaking change) The API for Node has changed. This should generally not affect user code, unless the user manually constructs decision trees (instead of using the trainClassifier or trainRegressor methods). The tree Node now includes more information, including the probability of the predicted label (for classification).

  3. Printing methods’ output has changed. The toString (Scala/Java) and __repr__ (Python) methods used to print the full model; they now print a summary. For the full model, use toDebugString.

Examples in the Spark distribution and examples in the Decision Trees Guide have been updated accordingly.

From 1.0 to 1.1

The only API changes in MLlib v1.1 are in DecisionTree, which continues to be an experimental API in MLlib 1.1:

  1. (Breaking change) The meaning of tree depth has been changed by 1 in order to match the implementations of trees in scikit-learn and in rpart. In MLlib v1.0, a depth-1 tree had 1 leaf node, and a depth-2 tree had 1 root node and 2 leaf nodes. In MLlib v1.1, a depth-0 tree has 1 leaf node, and a depth-1 tree has 1 root node and 2 leaf nodes. This depth is specified by the maxDepth parameter in Strategy or via DecisionTree static trainClassifier and trainRegressor methods.

  2. (Non-breaking change) We recommend using the newly added trainClassifier and trainRegressor methods to build a DecisionTree, rather than using the old parameter class Strategy. These new training methods explicitly separate classification and regression, and they replace specialized parameter types with simple String types.

Examples of the new, recommended trainClassifier and trainRegressor are given in the Decision Trees Guide.

From 0.9 to 1.0

In MLlib v1.0, we support both dense and sparse input in a unified way, which introduces a few breaking changes. If your data is sparse, please store it in a sparse format instead of dense to take advantage of sparsity in both storage and computation. Details are described below.