histogram {SparkR} | R Documentation |
This function computes a histogram for a given SparkR Column.
## S4 method for signature 'SparkDataFrame,characterOrColumn' histogram(df, col, nbins = 10)
df |
the SparkDataFrame containing the Column to build the histogram from. |
col |
the column as Character string or a Column to build the histogram from. |
nbins |
the number of bins (optional). Default value is 10. |
a data.frame with the histogram statistics, i.e., counts and centroids.
histogram since 2.0.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
, attach
,
cache
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, insertInto
,
intersect
, isLocal
,
join
, limit
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
union
, unpersist
,
withColumn
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.text
## Not run:
##D
##D # Create a SparkDataFrame from the Iris dataset
##D irisDF <- createDataFrame(iris)
##D
##D # Compute histogram statistics
##D histStats <- histogram(irisDF, irisDF$Sepal_Length, nbins = 12)
##D
##D # Once SparkR has computed the histogram statistics, the histogram can be
##D # rendered using the ggplot2 library:
##D
##D require(ggplot2)
##D plot <- ggplot(histStats, aes(x = centroids, y = counts)) +
##D geom_bar(stat = "identity") +
##D xlab("Sepal_Length") + ylab("Frequency")
## End(Not run)