gapplyCollect {SparkR}R Documentation

gapplyCollect

Description

gapplyCollect

Groups the SparkDataFrame using the specified columns, applies the R function to each group and collects the result back to R as data.frame.

Usage

gapplyCollect(x, ...)

## S4 method for signature 'GroupedData'
gapplyCollect(x, func)

## S4 method for signature 'SparkDataFrame'
gapplyCollect(x, cols, func)

Arguments

x

a SparkDataFrame or GroupedData.

...

additional argument(s) passed to the method.

func

a function to be applied to each group partition specified by grouping column of the SparkDataFrame. The function func takes as argument a key - grouping columns and a data frame - a local R data.frame. The output of func is a local R data.frame.

cols

grouping columns.

Value

A data.frame.

Note

gapplyCollect(GroupedData) since 2.0.0

gapplyCollect(SparkDataFrame) since 2.0.0

See Also

gapply

Other SparkDataFrame functions: SparkDataFrame-class, agg, arrange, as.data.frame, attach, cache, coalesce, collect, colnames, coltypes, createOrReplaceTempView, crossJoin, dapplyCollect, dapply, describe, dim, distinct, dropDuplicates, dropna, drop, dtypes, except, explain, filter, first, gapply, getNumPartitions, group_by, head, histogram, insertInto, intersect, isLocal, join, limit, merge, mutate, ncol, nrow, persist, printSchema, randomSplit, rbind, registerTempTable, rename, repartition, sample, saveAsTable, schema, selectExpr, select, showDF, show, storageLevel, str, subset, take, union, unpersist, withColumn, with, write.df, write.jdbc, write.json, write.orc, write.parquet, write.text

Examples

## Not run: 
##D Computes the arithmetic mean of the second column by grouping
##D on the first and third columns. Output the grouping values and the average.
##D 
##D df <- createDataFrame (
##D list(list(1L, 1, "1", 0.1), list(1L, 2, "1", 0.2), list(3L, 3, "3", 0.3)),
##D   c("a", "b", "c", "d"))
##D 
##D result <- gapplyCollect(
##D   df,
##D   c("a", "c"),
##D   function(key, x) {
##D     y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D     colnames(y) <- c("key_a", "key_c", "mean_b")
##D     y
##D   })
##D 
##D We can also group the data and afterwards call gapply on GroupedData.
##D For Example:
##D gdf <- group_by(df, "a", "c")
##D result <- gapplyCollect(
##D   gdf,
##D   function(key, x) {
##D     y <- data.frame(key, mean(x$b), stringsAsFactors = FALSE)
##D     colnames(y) <- c("key_a", "key_c", "mean_b")
##D     y
##D   })
##D 
##D Result
##D ------
##D key_a key_c mean_b
##D 3 3 3.0
##D 1 1 1.5
##D 
##D Fits linear models on iris dataset by grouping on the 'Species' column and
##D using 'Sepal_Length' as a target variable, 'Sepal_Width', 'Petal_Length'
##D and 'Petal_Width' as training features.
##D 
##D df <- createDataFrame (iris)
##D result <- gapplyCollect(
##D   df,
##D   df$"Species",
##D   function(key, x) {
##D     m <- suppressWarnings(lm(Sepal_Length ~
##D     Sepal_Width + Petal_Length + Petal_Width, x))
##D     data.frame(t(coef(m)))
##D   })
##D 
##D Result
##D ---------
##D Model  X.Intercept.  Sepal_Width  Petal_Length  Petal_Width
##D 1        0.699883    0.3303370    0.9455356    -0.1697527
##D 2        1.895540    0.3868576    0.9083370    -0.6792238
##D 3        2.351890    0.6548350    0.2375602     0.2521257
##D 
## End(Not run)

[Package SparkR version 2.1.3 Index]