Source code for pyspark.ml.pipeline

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import sys

if sys.version > '3':
    basestring = str

from pyspark import since, keyword_only, SparkContext
from pyspark.ml.base import Estimator, Model, Transformer
from pyspark.ml.param import Param, Params
from pyspark.ml.util import JavaMLWriter, JavaMLReader, MLReadable, MLWritable
from pyspark.ml.wrapper import JavaParams
from pyspark.ml.common import inherit_doc


[docs]@inherit_doc class Pipeline(Estimator, MLReadable, MLWritable): """ A simple pipeline, which acts as an estimator. A Pipeline consists of a sequence of stages, each of which is either an :py:class:`Estimator` or a :py:class:`Transformer`. When :py:meth:`Pipeline.fit` is called, the stages are executed in order. If a stage is an :py:class:`Estimator`, its :py:meth:`Estimator.fit` method will be called on the input dataset to fit a model. Then the model, which is a transformer, will be used to transform the dataset as the input to the next stage. If a stage is a :py:class:`Transformer`, its :py:meth:`Transformer.transform` method will be called to produce the dataset for the next stage. The fitted model from a :py:class:`Pipeline` is a :py:class:`PipelineModel`, which consists of fitted models and transformers, corresponding to the pipeline stages. If stages is an empty list, the pipeline acts as an identity transformer. .. versionadded:: 1.3.0 """ stages = Param(Params._dummy(), "stages", "a list of pipeline stages") @keyword_only def __init__(self, stages=None): """ __init__(self, stages=None) """ super(Pipeline, self).__init__() kwargs = self._input_kwargs self.setParams(**kwargs)
[docs] @since("1.3.0") def setStages(self, value): """ Set pipeline stages. :param value: a list of transformers or estimators :return: the pipeline instance """ return self._set(stages=value)
[docs] @since("1.3.0") def getStages(self): """ Get pipeline stages. """ return self.getOrDefault(self.stages)
[docs] @keyword_only @since("1.3.0") def setParams(self, stages=None): """ setParams(self, stages=None) Sets params for Pipeline. """ kwargs = self._input_kwargs return self._set(**kwargs)
def _fit(self, dataset): stages = self.getStages() for stage in stages: if not (isinstance(stage, Estimator) or isinstance(stage, Transformer)): raise TypeError( "Cannot recognize a pipeline stage of type %s." % type(stage)) indexOfLastEstimator = -1 for i, stage in enumerate(stages): if isinstance(stage, Estimator): indexOfLastEstimator = i transformers = [] for i, stage in enumerate(stages): if i <= indexOfLastEstimator: if isinstance(stage, Transformer): transformers.append(stage) dataset = stage.transform(dataset) else: # must be an Estimator model = stage.fit(dataset) transformers.append(model) if i < indexOfLastEstimator: dataset = model.transform(dataset) else: transformers.append(stage) return PipelineModel(transformers)
[docs] @since("1.4.0") def copy(self, extra=None): """ Creates a copy of this instance. :param extra: extra parameters :returns: new instance """ if extra is None: extra = dict() that = Params.copy(self, extra) stages = [stage.copy(extra) for stage in that.getStages()] return that.setStages(stages)
[docs] @since("2.0.0") def write(self): """Returns an MLWriter instance for this ML instance.""" return JavaMLWriter(self)
[docs] @since("2.0.0") def save(self, path): """Save this ML instance to the given path, a shortcut of `write().save(path)`.""" self.write().save(path)
[docs] @classmethod @since("2.0.0") def read(cls): """Returns an MLReader instance for this class.""" return JavaMLReader(cls)
@classmethod def _from_java(cls, java_stage): """ Given a Java Pipeline, create and return a Python wrapper of it. Used for ML persistence. """ # Create a new instance of this stage. py_stage = cls() # Load information from java_stage to the instance. py_stages = [JavaParams._from_java(s) for s in java_stage.getStages()] py_stage.setStages(py_stages) py_stage._resetUid(java_stage.uid()) return py_stage def _to_java(self): """ Transfer this instance to a Java Pipeline. Used for ML persistence. :return: Java object equivalent to this instance. """ gateway = SparkContext._gateway cls = SparkContext._jvm.org.apache.spark.ml.PipelineStage java_stages = gateway.new_array(cls, len(self.getStages())) for idx, stage in enumerate(self.getStages()): java_stages[idx] = stage._to_java() _java_obj = JavaParams._new_java_obj("org.apache.spark.ml.Pipeline", self.uid) _java_obj.setStages(java_stages) return _java_obj
[docs]@inherit_doc class PipelineModel(Model, MLReadable, MLWritable): """ Represents a compiled pipeline with transformers and fitted models. .. versionadded:: 1.3.0 """ def __init__(self, stages): super(PipelineModel, self).__init__() self.stages = stages def _transform(self, dataset): for t in self.stages: dataset = t.transform(dataset) return dataset
[docs] @since("1.4.0") def copy(self, extra=None): """ Creates a copy of this instance. :param extra: extra parameters :returns: new instance """ if extra is None: extra = dict() stages = [stage.copy(extra) for stage in self.stages] return PipelineModel(stages)
[docs] @since("2.0.0") def write(self): """Returns an MLWriter instance for this ML instance.""" return JavaMLWriter(self)
[docs] @since("2.0.0") def save(self, path): """Save this ML instance to the given path, a shortcut of `write().save(path)`.""" self.write().save(path)
[docs] @classmethod @since("2.0.0") def read(cls): """Returns an MLReader instance for this class.""" return JavaMLReader(cls)
@classmethod def _from_java(cls, java_stage): """ Given a Java PipelineModel, create and return a Python wrapper of it. Used for ML persistence. """ # Load information from java_stage to the instance. py_stages = [JavaParams._from_java(s) for s in java_stage.stages()] # Create a new instance of this stage. py_stage = cls(py_stages) py_stage._resetUid(java_stage.uid()) return py_stage def _to_java(self): """ Transfer this instance to a Java PipelineModel. Used for ML persistence. :return: Java object equivalent to this instance. """ gateway = SparkContext._gateway cls = SparkContext._jvm.org.apache.spark.ml.Transformer java_stages = gateway.new_array(cls, len(self.stages)) for idx, stage in enumerate(self.stages): java_stages[idx] = stage._to_java() _java_obj =\ JavaParams._new_java_obj("org.apache.spark.ml.PipelineModel", self.uid, java_stages) return _java_obj