write.df {SparkR} | R Documentation |
The data source is specified by the source
and a set of options (...).
If source
is not specified, the default data source configured by
spark.sql.sources.default will be used.
write.df(df, path = NULL, ...) saveDF(df, path, source = NULL, mode = "error", ...) write.df(df, path = NULL, ...) ## S4 method for signature 'SparkDataFrame' write.df(df, path = NULL, source = NULL, mode = "error", ...) ## S4 method for signature 'SparkDataFrame,character' saveDF(df, path, source = NULL, mode = "error", ...)
df |
a SparkDataFrame. |
path |
a name for the table. |
... |
additional argument(s) passed to the method. |
source |
a name for external data source. |
mode |
one of 'append', 'overwrite', 'error', 'errorifexists', 'ignore' save mode (it is 'error' by default) |
Additionally, mode is used to specify the behavior of the save operation when data already exists in the data source. There are four modes:
'append': Contents of this SparkDataFrame are expected to be appended to existing data.
'overwrite': Existing data is expected to be overwritten by the contents of this SparkDataFrame.
'error' or 'errorifexists': An exception is expected to be thrown.
'ignore': The save operation is expected to not save the contents of the SparkDataFrame and to not change the existing data.
write.df since 1.4.0
saveDF since 1.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, exceptAll
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersectAll
, intersect
,
isLocal
, isStreaming
,
join
, limit
,
localCheckpoint
, merge
,
mutate
, ncol
,
nrow
, persist
,
printSchema
, randomSplit
,
rbind
, rename
,
repartitionByRange
,
repartition
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionByName
,
union
, unpersist
,
withColumn
, withWatermark
,
with
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D sparkR.session()
##D path <- "path/to/file.json"
##D df <- read.json(path)
##D write.df(df, "myfile", "parquet", "overwrite")
##D saveDF(df, parquetPath2, "parquet", mode = "append", mergeSchema = TRUE)
## End(Not run)