pyspark.ml.feature.
ImputerModel
Model fitted by Imputer.
Imputer
New in version 2.2.0.
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getInputCol()
getInputCol
Gets the value of inputCol or its default value.
getInputCols()
getInputCols
Gets the value of inputCols or its default value.
getMissingValue()
getMissingValue
Gets the value of missingValue or its default value.
missingValue
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getOutputCol()
getOutputCol
Gets the value of outputCol or its default value.
getOutputCols()
getOutputCols
Gets the value of outputCols or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getRelativeError()
getRelativeError
Gets the value of relativeError or its default value.
getStrategy()
getStrategy
Gets the value of strategy or its default value.
strategy
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setInputCol(value)
setInputCol
Sets the value of inputCol.
inputCol
setInputCols(value)
setInputCols
Sets the value of inputCols.
inputCols
setOutputCol(value)
setOutputCol
Sets the value of outputCol.
outputCol
setOutputCols(value)
setOutputCols
Sets the value of outputCols.
outputCols
transform(dataset[, params])
transform
Transforms the input dataset with optional parameters.
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
params
Returns all params ordered by name.
relativeError
surrogateDF
Returns a DataFrame containing inputCols and their corresponding surrogates, which are used to replace the missing values in the input DataFrame.
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 3.0.0.
New in version 1.3.0.
pyspark.sql.DataFrame
input dataset
an optional param map that overrides embedded params.
transformed dataset
Attributes Documentation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param