#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from distutils.version import LooseVersion
from functools import partial
from typing import Any, Callable, Iterator, List, Optional, Tuple, Union, cast, no_type_check
import pandas as pd
from pandas.api.types import is_hashable, is_list_like
from pyspark.sql import functions as F, Column, Window
from pyspark.sql.types import DataType
# For running doctests and reference resolution in PyCharm.
from pyspark import pandas as ps # noqa: F401
from pyspark.pandas._typing import Label, Name, Scalar
from pyspark.pandas.exceptions import PandasNotImplementedError
from pyspark.pandas.frame import DataFrame
from pyspark.pandas.indexes.base import Index
from pyspark.pandas.missing.indexes import MissingPandasLikeMultiIndex
from pyspark.pandas.series import Series, first_series
from pyspark.pandas.utils import (
compare_disallow_null,
is_name_like_tuple,
name_like_string,
scol_for,
verify_temp_column_name,
)
from pyspark.pandas.internal import (
InternalField,
InternalFrame,
NATURAL_ORDER_COLUMN_NAME,
SPARK_INDEX_NAME_FORMAT,
)
from pyspark.pandas.spark import functions as SF
[docs]class MultiIndex(Index):
"""
pandas-on-Spark MultiIndex that corresponds to pandas MultiIndex logically. This might hold
Spark Column internally.
Parameters
----------
levels : sequence of arrays
The unique labels for each level.
codes : sequence of arrays
Integers for each level designating which label at each location.
sortorder : optional int
Level of sortedness (must be lexicographically sorted by that
level).
names : optional sequence of objects
Names for each of the index levels. (name is accepted for compat).
copy : bool, default False
Copy the meta-data.
verify_integrity : bool, default True
Check that the levels/codes are consistent and valid.
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_product : Create a MultiIndex from the cartesian product
of iterables.
MultiIndex.from_tuples : Convert list of tuples to a MultiIndex.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Index : A single-level Index.
Examples
--------
>>> ps.DataFrame({'a': ['a', 'b', 'c']}, index=[[1, 2, 3], [4, 5, 6]]).index # doctest: +SKIP
MultiIndex([(1, 4),
(2, 5),
(3, 6)],
)
>>> ps.DataFrame({'a': [1, 2, 3]}, index=[list('abc'), list('def')]).index # doctest: +SKIP
MultiIndex([('a', 'd'),
('b', 'e'),
('c', 'f')],
)
"""
@no_type_check
def __new__(
cls,
levels=None,
codes=None,
sortorder=None,
names=None,
dtype=None,
copy=False,
name=None,
verify_integrity: bool = True,
) -> "MultiIndex":
if LooseVersion(pd.__version__) < LooseVersion("0.24"):
if levels is None or codes is None:
raise TypeError("Must pass both levels and codes")
pidx = pd.MultiIndex(
levels=levels,
labels=codes,
sortorder=sortorder,
names=names,
dtype=dtype,
copy=copy,
name=name,
verify_integrity=verify_integrity,
)
else:
pidx = pd.MultiIndex(
levels=levels,
codes=codes,
sortorder=sortorder,
names=names,
dtype=dtype,
copy=copy,
name=name,
verify_integrity=verify_integrity,
)
return ps.from_pandas(pidx)
@property
def _internal(self) -> InternalFrame:
internal = self._psdf._internal
scol = F.struct(*internal.index_spark_columns)
return internal.copy(
column_labels=[None],
data_spark_columns=[scol],
data_fields=[None],
column_label_names=None,
)
@property
def _column_label(self) -> Optional[Label]:
return None
def __abs__(self) -> "MultiIndex":
raise TypeError("TypeError: cannot perform __abs__ with this index type: MultiIndex")
def _with_new_scol(
self, scol: Column, *, field: Optional[InternalField] = None
) -> "MultiIndex":
raise NotImplementedError("Not supported for type MultiIndex")
@no_type_check
def any(self, *args, **kwargs) -> None:
raise TypeError("cannot perform any with this index type: MultiIndex")
@no_type_check
def all(self, *args, **kwargs) -> None:
raise TypeError("cannot perform all with this index type: MultiIndex")
[docs] @staticmethod
def from_tuples(
tuples: List[Tuple],
sortorder: Optional[int] = None,
names: Optional[List[Name]] = None,
) -> "MultiIndex":
"""
Convert list of tuples to MultiIndex.
Parameters
----------
tuples : list / sequence of tuple-likes
Each tuple is the index of one row/column.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
Examples
--------
>>> tuples = [(1, 'red'), (1, 'blue'),
... (2, 'red'), (2, 'blue')]
>>> ps.MultiIndex.from_tuples(tuples, names=('number', 'color')) # doctest: +SKIP
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
"""
return cast(
MultiIndex,
ps.from_pandas(
pd.MultiIndex.from_tuples(tuples=tuples, sortorder=sortorder, names=names)
),
)
[docs] @staticmethod
def from_arrays(
arrays: List[List],
sortorder: Optional[int] = None,
names: Optional[List[Name]] = None,
) -> "MultiIndex":
"""
Convert arrays to MultiIndex.
Parameters
----------
arrays: list / sequence of array-likes
Each array-like gives one level’s value for each data point. len(arrays)
is the number of levels.
sortorder: int or None
Level of sortedness (must be lexicographically sorted by that level).
names: list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index: MultiIndex
Examples
--------
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
>>> ps.MultiIndex.from_arrays(arrays, names=('number', 'color')) # doctest: +SKIP
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
"""
return cast(
MultiIndex,
ps.from_pandas(
pd.MultiIndex.from_arrays(arrays=arrays, sortorder=sortorder, names=names)
),
)
[docs] @staticmethod
def from_product(
iterables: List[List],
sortorder: Optional[int] = None,
names: Optional[List[Name]] = None,
) -> "MultiIndex":
"""
Make a MultiIndex from the cartesian product of multiple iterables.
Parameters
----------
iterables : list / sequence of iterables
Each iterable has unique labels for each level of the index.
sortorder : int or None
Level of sortedness (must be lexicographically sorted by that
level).
names : list / sequence of str, optional
Names for the levels in the index.
Returns
-------
index : MultiIndex
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
Examples
--------
>>> numbers = [0, 1, 2]
>>> colors = ['green', 'purple']
>>> ps.MultiIndex.from_product([numbers, colors],
... names=['number', 'color']) # doctest: +SKIP
MultiIndex([(0, 'green'),
(0, 'purple'),
(1, 'green'),
(1, 'purple'),
(2, 'green'),
(2, 'purple')],
names=['number', 'color'])
"""
return cast(
MultiIndex,
ps.from_pandas(
pd.MultiIndex.from_product(iterables=iterables, sortorder=sortorder, names=names)
),
)
[docs] @staticmethod
def from_frame(df: DataFrame, names: Optional[List[Name]] = None) -> "MultiIndex":
"""
Make a MultiIndex from a DataFrame.
Parameters
----------
df : DataFrame
DataFrame to be converted to MultiIndex.
names : list-like, optional
If no names are provided, use the column names, or tuple of column
names if the columns is a MultiIndex. If a sequence, overwrite
names with the given sequence.
Returns
-------
MultiIndex
The MultiIndex representation of the given DataFrame.
See Also
--------
MultiIndex.from_arrays : Convert list of arrays to MultiIndex.
MultiIndex.from_tuples : Convert list of tuples to MultiIndex.
MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
Examples
--------
>>> df = ps.DataFrame([['HI', 'Temp'], ['HI', 'Precip'],
... ['NJ', 'Temp'], ['NJ', 'Precip']],
... columns=['a', 'b'])
>>> df # doctest: +SKIP
a b
0 HI Temp
1 HI Precip
2 NJ Temp
3 NJ Precip
>>> ps.MultiIndex.from_frame(df) # doctest: +SKIP
MultiIndex([('HI', 'Temp'),
('HI', 'Precip'),
('NJ', 'Temp'),
('NJ', 'Precip')],
names=['a', 'b'])
Using explicit names, instead of the column names
>>> ps.MultiIndex.from_frame(df, names=['state', 'observation']) # doctest: +SKIP
MultiIndex([('HI', 'Temp'),
('HI', 'Precip'),
('NJ', 'Temp'),
('NJ', 'Precip')],
names=['state', 'observation'])
"""
if not isinstance(df, DataFrame):
raise TypeError("Input must be a DataFrame")
sdf = df.to_spark()
if names is None:
names = df._internal.column_labels
elif not is_list_like(names):
raise TypeError("Names should be list-like for a MultiIndex")
else:
names = [name if is_name_like_tuple(name) else (name,) for name in names]
internal = InternalFrame(
spark_frame=sdf,
index_spark_columns=[scol_for(sdf, col) for col in sdf.columns],
index_names=names,
)
return cast(MultiIndex, DataFrame(internal).index)
@property
def name(self) -> Name:
raise PandasNotImplementedError(class_name="pd.MultiIndex", property_name="name")
@name.setter
def name(self, name: Name) -> None:
raise PandasNotImplementedError(class_name="pd.MultiIndex", property_name="name")
def _verify_for_rename(self, name: List[Name]) -> List[Label]: # type: ignore[override]
if is_list_like(name):
if self._internal.index_level != len(name):
raise ValueError(
"Length of new names must be {}, got {}".format(
self._internal.index_level, len(name)
)
)
if any(not is_hashable(n) for n in name):
raise TypeError("MultiIndex.name must be a hashable type")
return [n if is_name_like_tuple(n) else (n,) for n in name]
else:
raise TypeError("Must pass list-like as `names`.")
[docs] def swaplevel(self, i: int = -2, j: int = -1) -> "MultiIndex":
"""
Swap level i with level j.
Calling this method does not change the ordering of the values.
Parameters
----------
i : int, str, default -2
First level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
j : int, str, default -1
Second level of index to be swapped. Can pass level name as string.
Type of parameters can be mixed.
Returns
-------
MultiIndex
A new MultiIndex.
Examples
--------
>>> midx = ps.MultiIndex.from_arrays([['a', 'b'], [1, 2]], names = ['word', 'number'])
>>> midx # doctest: +SKIP
MultiIndex([('a', 1),
('b', 2)],
names=['word', 'number'])
>>> midx.swaplevel(0, 1) # doctest: +SKIP
MultiIndex([(1, 'a'),
(2, 'b')],
names=['number', 'word'])
>>> midx.swaplevel('number', 'word') # doctest: +SKIP
MultiIndex([(1, 'a'),
(2, 'b')],
names=['number', 'word'])
"""
for index in (i, j):
if not isinstance(index, int) and index not in self.names:
raise KeyError("Level %s not found" % index)
i = i if isinstance(i, int) else self.names.index(i)
j = j if isinstance(j, int) else self.names.index(j)
for index in (i, j):
if index >= len(self.names) or index < -len(self.names):
raise IndexError(
"Too many levels: Index has only %s levels, "
"%s is not a valid level number" % (len(self.names), index)
)
index_map = list(
zip(
self._internal.index_spark_columns,
self._internal.index_names,
self._internal.index_fields,
)
)
index_map[i], index_map[j] = index_map[j], index_map[i]
index_spark_columns, index_names, index_fields = zip(*index_map)
internal = self._internal.copy(
index_spark_columns=list(index_spark_columns),
index_names=list(index_names),
index_fields=list(index_fields),
column_labels=[],
data_spark_columns=[],
data_fields=[],
)
return cast(MultiIndex, DataFrame(internal).index)
@property
def levshape(self) -> Tuple[int, ...]:
"""
A tuple with the length of each level.
Examples
--------
>>> midx = ps.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')])
>>> midx # doctest: +SKIP
MultiIndex([('a', 'x'),
('b', 'y'),
('c', 'z')],
)
>>> midx.levshape
(3, 3)
"""
result = self._internal.spark_frame.agg(
*(F.countDistinct(c) for c in self._internal.index_spark_columns)
).collect()[0]
return tuple(result)
@staticmethod
def _comparator_for_monotonic_increasing(
data_type: DataType,
) -> Callable[[Column, Column, Callable[[Column, Column], Column]], Column]:
return compare_disallow_null
def _is_monotonic(self, order: str) -> bool:
if order == "increasing":
return self._is_monotonic_increasing().all()
else:
return self._is_monotonic_decreasing().all()
def _is_monotonic_increasing(self) -> Series:
window = Window.orderBy(NATURAL_ORDER_COLUMN_NAME).rowsBetween(-1, -1)
cond = SF.lit(True)
has_not_null = SF.lit(True)
for scol in self._internal.index_spark_columns[::-1]:
data_type = self._internal.spark_type_for(scol)
prev = F.lag(scol, 1).over(window)
compare = MultiIndex._comparator_for_monotonic_increasing(data_type)
# Since pandas 1.1.4, null value is not allowed at any levels of MultiIndex.
# Therefore, we should check `has_not_null` over the all levels.
has_not_null = has_not_null & scol.isNotNull()
cond = F.when(scol.eqNullSafe(prev), cond).otherwise(compare(scol, prev, Column.__gt__))
cond = has_not_null & (prev.isNull() | cond)
cond_name = verify_temp_column_name(
self._internal.spark_frame.select(self._internal.index_spark_columns),
"__is_monotonic_increasing_cond__",
)
sdf = self._internal.spark_frame.select(
self._internal.index_spark_columns + [cond.alias(cond_name)]
)
internal = InternalFrame(
spark_frame=sdf,
index_spark_columns=[
scol_for(sdf, col) for col in self._internal.index_spark_column_names
],
index_names=self._internal.index_names,
index_fields=self._internal.index_fields,
)
return first_series(DataFrame(internal))
@staticmethod
def _comparator_for_monotonic_decreasing(
data_type: DataType,
) -> Callable[[Column, Column, Callable[[Column, Column], Column]], Column]:
return compare_disallow_null
def _is_monotonic_decreasing(self) -> Series:
window = Window.orderBy(NATURAL_ORDER_COLUMN_NAME).rowsBetween(-1, -1)
cond = SF.lit(True)
has_not_null = SF.lit(True)
for scol in self._internal.index_spark_columns[::-1]:
data_type = self._internal.spark_type_for(scol)
prev = F.lag(scol, 1).over(window)
compare = MultiIndex._comparator_for_monotonic_increasing(data_type)
# Since pandas 1.1.4, null value is not allowed at any levels of MultiIndex.
# Therefore, we should check `has_not_null` over the all levels.
has_not_null = has_not_null & scol.isNotNull()
cond = F.when(scol.eqNullSafe(prev), cond).otherwise(compare(scol, prev, Column.__lt__))
cond = has_not_null & (prev.isNull() | cond)
cond_name = verify_temp_column_name(
self._internal.spark_frame.select(self._internal.index_spark_columns),
"__is_monotonic_decreasing_cond__",
)
sdf = self._internal.spark_frame.select(
self._internal.index_spark_columns + [cond.alias(cond_name)]
)
internal = InternalFrame(
spark_frame=sdf,
index_spark_columns=[
scol_for(sdf, col) for col in self._internal.index_spark_column_names
],
index_names=self._internal.index_names,
index_fields=self._internal.index_fields,
)
return first_series(DataFrame(internal))
[docs] def to_frame( # type: ignore[override]
self, index: bool = True, name: Optional[List[Name]] = None
) -> DataFrame:
"""
Create a DataFrame with the levels of the MultiIndex as columns.
Column ordering is determined by the DataFrame constructor with data as
a dict.
Parameters
----------
index : boolean, default True
Set the index of the returned DataFrame as the original MultiIndex.
name : list / sequence of strings, optional
The passed names should substitute index level names.
Returns
-------
DataFrame : a DataFrame containing the original MultiIndex data.
See Also
--------
DataFrame
Examples
--------
>>> tuples = [(1, 'red'), (1, 'blue'),
... (2, 'red'), (2, 'blue')]
>>> idx = ps.MultiIndex.from_tuples(tuples, names=('number', 'color'))
>>> idx # doctest: +SKIP
MultiIndex([(1, 'red'),
(1, 'blue'),
(2, 'red'),
(2, 'blue')],
names=['number', 'color'])
>>> idx.to_frame() # doctest: +NORMALIZE_WHITESPACE
number color
number color
1 red 1 red
blue 1 blue
2 red 2 red
blue 2 blue
By default, the original Index is reused. To enforce a new Index:
>>> idx.to_frame(index=False)
number color
0 1 red
1 1 blue
2 2 red
3 2 blue
To override the name of the resulting column, specify `name`:
>>> idx.to_frame(name=['n', 'c']) # doctest: +NORMALIZE_WHITESPACE
n c
number color
1 red 1 red
blue 1 blue
2 red 2 red
blue 2 blue
"""
if name is None:
name = [
name if name is not None else (i,)
for i, name in enumerate(self._internal.index_names)
]
elif is_list_like(name):
if len(name) != self._internal.index_level:
raise ValueError("'name' should have same length as number of levels on index.")
name = [n if is_name_like_tuple(n) else (n,) for n in name]
else:
raise TypeError("'name' must be a list / sequence of column names.")
return self._to_frame(index=index, names=name)
def to_pandas(self) -> pd.MultiIndex:
"""
Return a pandas MultiIndex.
.. note:: This method should only be used if the resulting pandas object is expected
to be small, as all the data is loaded into the driver's memory.
Examples
--------
>>> df = ps.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
... columns=['dogs', 'cats'],
... index=[list('abcd'), list('efgh')])
>>> df['dogs'].index.to_pandas() # doctest: +SKIP
MultiIndex([('a', 'e'),
('b', 'f'),
('c', 'g'),
('d', 'h')],
)
"""
# TODO: We might need to handle internal state change.
# So far, we don't have any functions to change the internal state of MultiIndex except for
# series-like operations. In that case, it creates new Index object instead of MultiIndex.
return super().to_pandas()
def nunique(self, dropna: bool = True, approx: bool = False, rsd: float = 0.05) -> int:
raise NotImplementedError("nunique is not defined for MultiIndex")
# TODO: add 'name' parameter after pd.MultiIndex.name is implemented
[docs] def copy(self, deep: Optional[bool] = None) -> "MultiIndex": # type: ignore[override]
"""
Make a copy of this object.
Parameters
----------
deep : None
this parameter is not supported but just dummy parameter to match pandas.
Examples
--------
>>> df = ps.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
... columns=['dogs', 'cats'],
... index=[list('abcd'), list('efgh')])
>>> df['dogs'].index # doctest: +SKIP
MultiIndex([('a', 'e'),
('b', 'f'),
('c', 'g'),
('d', 'h')],
)
Copy index
>>> df.index.copy() # doctest: +SKIP
MultiIndex([('a', 'e'),
('b', 'f'),
('c', 'g'),
('d', 'h')],
)
"""
return super().copy(deep=deep) # type: ignore
[docs] def symmetric_difference( # type: ignore[override]
self,
other: Index,
result_name: Optional[List[Name]] = None,
sort: Optional[bool] = None,
) -> "MultiIndex":
"""
Compute the symmetric difference of two MultiIndex objects.
Parameters
----------
other : Index or array-like
result_name : list
sort : True or None, default None
Whether to sort the resulting index.
* True : Attempt to sort the result.
* None : Do not sort the result.
Returns
-------
symmetric_difference : MiltiIndex
Notes
-----
``symmetric_difference`` contains elements that appear in either
``idx1`` or ``idx2`` but not both. Equivalent to the Index created by
``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates
dropped.
Examples
--------
>>> midx1 = pd.MultiIndex([['lama', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... [[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 0, 0, 0, 1, 2, 0, 1, 2]])
>>> midx2 = pd.MultiIndex([['pandas-on-Spark', 'cow', 'falcon'],
... ['speed', 'weight', 'length']],
... [[0, 0, 0, 1, 1, 1, 2, 2, 2],
... [0, 0, 0, 0, 1, 2, 0, 1, 2]])
>>> s1 = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
... index=midx1)
>>> s2 = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
... index=midx2)
>>> s1.index.symmetric_difference(s2.index) # doctest: +SKIP
MultiIndex([('pandas-on-Spark', 'speed'),
( 'lama', 'speed')],
)
You can set names of result Index.
>>> s1.index.symmetric_difference(s2.index, result_name=['a', 'b']) # doctest: +SKIP
MultiIndex([('pandas-on-Spark', 'speed'),
( 'lama', 'speed')],
names=['a', 'b'])
You can set sort to `True`, if you want to sort the resulting index.
>>> s1.index.symmetric_difference(s2.index, sort=True) # doctest: +SKIP
MultiIndex([('pandas-on-Spark', 'speed'),
( 'lama', 'speed')],
)
You can also use the ``^`` operator:
>>> s1.index ^ s2.index # doctest: +SKIP
MultiIndex([('pandas-on-Spark', 'speed'),
( 'lama', 'speed')],
)
"""
if type(self) != type(other):
raise NotImplementedError(
"Doesn't support symmetric_difference between Index & MultiIndex for now"
)
sdf_self = self._psdf._internal.spark_frame.select(self._internal.index_spark_columns)
sdf_other = other._psdf._internal.spark_frame.select(other._internal.index_spark_columns)
sdf_symdiff = sdf_self.union(sdf_other).subtract(sdf_self.intersect(sdf_other))
if sort:
sdf_symdiff = sdf_symdiff.sort(*self._internal.index_spark_columns)
internal = InternalFrame(
spark_frame=sdf_symdiff,
index_spark_columns=[
scol_for(sdf_symdiff, col) for col in self._internal.index_spark_column_names
],
index_names=self._internal.index_names,
index_fields=self._internal.index_fields,
)
result = cast(MultiIndex, DataFrame(internal).index)
if result_name:
result.names = result_name
return result
# TODO: ADD error parameter
[docs] def drop(self, codes: List[Any], level: Optional[Union[int, Name]] = None) -> "MultiIndex":
"""
Make new MultiIndex with passed list of labels deleted
Parameters
----------
codes : array-like
Must be a list of tuples
level : int or level name, default None
Returns
-------
dropped : MultiIndex
Examples
--------
>>> index = ps.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')])
>>> index # doctest: +SKIP
MultiIndex([('a', 'x'),
('b', 'y'),
('c', 'z')],
)
>>> index.drop(['a']) # doctest: +SKIP
MultiIndex([('b', 'y'),
('c', 'z')],
)
>>> index.drop(['x', 'y'], level=1) # doctest: +SKIP
MultiIndex([('c', 'z')],
)
"""
internal = self._internal.resolved_copy
sdf = internal.spark_frame
index_scols = internal.index_spark_columns
if level is None:
scol = index_scols[0]
elif isinstance(level, int):
scol = index_scols[level]
else:
scol = None
for index_spark_column, index_name in zip(
internal.index_spark_columns, internal.index_names
):
if not isinstance(level, tuple):
level = (level,)
if level == index_name:
if scol is not None:
raise ValueError(
"The name {} occurs multiple times, use a level number".format(
name_like_string(level)
)
)
scol = index_spark_column
if scol is None:
raise KeyError("Level {} not found".format(name_like_string(level)))
sdf = sdf[~scol.isin(codes)]
internal = InternalFrame(
spark_frame=sdf,
index_spark_columns=[scol_for(sdf, col) for col in internal.index_spark_column_names],
index_names=internal.index_names,
index_fields=internal.index_fields,
column_labels=[],
data_spark_columns=[],
data_fields=[],
)
return cast(MultiIndex, DataFrame(internal).index)
def argmax(self) -> None:
raise TypeError("reduction operation 'argmax' not allowed for this dtype")
def argmin(self) -> None:
raise TypeError("reduction operation 'argmin' not allowed for this dtype")
def asof(self, label: Any) -> None:
raise NotImplementedError(
"only the default get_loc method is currently supported for MultiIndex"
)
@property
def is_all_dates(self) -> bool:
"""
is_all_dates always returns False for MultiIndex
Examples
--------
>>> from datetime import datetime
>>> idx = ps.MultiIndex.from_tuples(
... [(datetime(2019, 1, 1, 0, 0, 0), datetime(2019, 1, 1, 0, 0, 0)),
... (datetime(2019, 1, 1, 0, 0, 0), datetime(2019, 1, 1, 0, 0, 0))])
>>> idx # doctest: +SKIP
MultiIndex([('2019-01-01', '2019-01-01'),
('2019-01-01', '2019-01-01')],
)
>>> idx.is_all_dates
False
"""
return False
def __getattr__(self, item: str) -> Any:
if hasattr(MissingPandasLikeMultiIndex, item):
property_or_func = getattr(MissingPandasLikeMultiIndex, item)
if isinstance(property_or_func, property):
return property_or_func.fget(self) # type: ignore
else:
return partial(property_or_func, self)
raise AttributeError("'MultiIndex' object has no attribute '{}'".format(item))
def _get_level_number(self, level: Union[int, Name]) -> int:
"""
Return the level number if a valid level is given.
"""
count = self.names.count(level)
if (count > 1) and not isinstance(level, int):
raise ValueError("The name %s occurs multiple times, use a level number" % level)
if level in self.names:
level = self.names.index(level)
elif isinstance(level, int):
nlevels = self.nlevels
if level >= nlevels:
raise IndexError(
"Too many levels: Index has only %d "
"levels, %d is not a valid level number" % (nlevels, level)
)
if level < 0:
if (level + nlevels) < 0:
raise IndexError(
"Too many levels: Index has only %d levels, "
"not %d" % (nlevels, level + 1)
)
level = level + nlevels
else:
raise KeyError("Level %s not found" % str(level))
return level
def get_level_values(self, level: Union[int, Name]) -> Index:
"""
Return vector of label values for requested level,
equal to the length of the index.
Parameters
----------
level : int or str
``level`` is either the integer position of the level in the
MultiIndex, or the name of the level.
Returns
-------
values : Index
Values is a level of this MultiIndex converted to
a single :class:`Index` (or subclass thereof).
Examples
--------
Create a MultiIndex:
>>> mi = ps.MultiIndex.from_tuples([('x', 'a'), ('x', 'b'), ('y', 'a')])
>>> mi.names = ['level_1', 'level_2']
Get level values by supplying level as either integer or name:
>>> mi.get_level_values(0)
Index(['x', 'x', 'y'], dtype='object', name='level_1')
>>> mi.get_level_values('level_2')
Index(['a', 'b', 'a'], dtype='object', name='level_2')
"""
level = self._get_level_number(level)
index_scol = self._internal.index_spark_columns[level]
index_name = self._internal.index_names[level]
index_field = self._internal.index_fields[level]
internal = self._internal.copy(
index_spark_columns=[index_scol],
index_names=[index_name],
index_fields=[index_field],
column_labels=[],
data_spark_columns=[],
data_fields=[],
)
return DataFrame(internal).index
[docs] def insert(self, loc: int, item: Any) -> Index:
"""
Make new MultiIndex inserting new item at location.
Follows Python list.append semantics for negative values.
Parameters
----------
loc : int
item : object
Returns
-------
new_index : MultiIndex
Examples
--------
>>> psmidx = ps.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
>>> psmidx.insert(3, ("h", "j")) # doctest: +SKIP
MultiIndex([('a', 'x'),
('b', 'y'),
('c', 'z'),
('h', 'j')],
)
For negative values
>>> psmidx.insert(-2, ("h", "j")) # doctest: +SKIP
MultiIndex([('a', 'x'),
('h', 'j'),
('b', 'y'),
('c', 'z')],
)
"""
length = len(self)
if loc < 0:
loc = loc + length
if loc < 0:
raise IndexError(
"index {} is out of bounds for axis 0 with size {}".format(
(loc - length), length
)
)
else:
if loc > length:
raise IndexError(
"index {} is out of bounds for axis 0 with size {}".format(loc, length)
)
index_name = [
(name,) for name in self._internal.index_spark_column_names
] # type: List[Label]
sdf_before = self.to_frame(name=index_name)[:loc].to_spark()
sdf_middle = Index([item]).to_frame(name=index_name).to_spark()
sdf_after = self.to_frame(name=index_name)[loc:].to_spark()
sdf = sdf_before.union(sdf_middle).union(sdf_after)
internal = InternalFrame(
spark_frame=sdf,
index_spark_columns=[
scol_for(sdf, col) for col in self._internal.index_spark_column_names
],
index_names=self._internal.index_names,
index_fields=[InternalField(field.dtype) for field in self._internal.index_fields],
)
return DataFrame(internal).index
[docs] def item(self) -> Tuple[Scalar, ...]:
"""
Return the first element of the underlying data as a python tuple.
Returns
-------
tuple
The first element of MultiIndex.
Raises
------
ValueError
If the data is not length-1.
Examples
--------
>>> psmidx = ps.MultiIndex.from_tuples([('a', 'x')])
>>> psmidx.item()
('a', 'x')
"""
return self._psdf.head(2)._to_internal_pandas().index.item()
[docs] def intersection(self, other: Union[DataFrame, Series, Index, List]) -> "MultiIndex":
"""
Form the intersection of two Index objects.
This returns a new Index with elements common to the index and `other`.
Parameters
----------
other : Index or array-like
Returns
-------
intersection : MultiIndex
Examples
--------
>>> midx1 = ps.MultiIndex.from_tuples([("a", "x"), ("b", "y"), ("c", "z")])
>>> midx2 = ps.MultiIndex.from_tuples([("c", "z"), ("d", "w")])
>>> midx1.intersection(midx2).sort_values() # doctest: +SKIP
MultiIndex([('c', 'z')],
)
"""
if isinstance(other, Series) or not is_list_like(other):
raise TypeError("other must be a MultiIndex or a list of tuples")
elif isinstance(other, DataFrame):
raise ValueError("Index data must be 1-dimensional")
elif isinstance(other, MultiIndex):
spark_frame_other = other.to_frame().to_spark()
keep_name = self.names == other.names
elif isinstance(other, Index):
# Always returns an empty MultiIndex if `other` is Index.
return self.to_frame().head(0).index # type: ignore
elif not all(isinstance(item, tuple) for item in other):
raise TypeError("other must be a MultiIndex or a list of tuples")
else:
other = MultiIndex.from_tuples(list(other))
spark_frame_other = cast(MultiIndex, other).to_frame().to_spark()
keep_name = True
index_fields = self._index_fields_for_union_like(other, func_name="intersection")
default_name = [SPARK_INDEX_NAME_FORMAT(i) for i in range(self.nlevels)] # type: List
spark_frame_self = self.to_frame(name=default_name).to_spark()
spark_frame_intersected = spark_frame_self.intersect(spark_frame_other)
if keep_name:
index_names = self._internal.index_names
else:
index_names = None
internal = InternalFrame(
spark_frame=spark_frame_intersected,
index_spark_columns=[scol_for(spark_frame_intersected, col) for col in default_name],
index_names=index_names,
index_fields=index_fields,
)
return cast(MultiIndex, DataFrame(internal).index)
@property
def hasnans(self) -> bool:
raise NotImplementedError("hasnans is not defined for MultiIndex")
@property
def inferred_type(self) -> str:
"""
Return a string of the type inferred from the values.
"""
# Always returns "mixed" for MultiIndex
return "mixed"
@property
def asi8(self) -> None:
"""
Integer representation of the values.
"""
# Always returns None for MultiIndex
return None
def factorize(
self, sort: bool = True, na_sentinel: Optional[int] = -1
) -> Tuple["MultiIndex", pd.Index]:
return MissingPandasLikeMultiIndex.factorize(self, sort=sort, na_sentinel=na_sentinel)
def __iter__(self) -> Iterator:
return MissingPandasLikeMultiIndex.__iter__(self)
def map(
self,
mapper: Union[dict, Callable[[Any], Any], pd.Series] = None,
na_action: Optional[str] = None,
) -> "Index":
return MissingPandasLikeMultiIndex.map(self, mapper, na_action)
def _test() -> None:
import os
import doctest
import sys
import numpy
from pyspark.sql import SparkSession
import pyspark.pandas.indexes.multi
os.chdir(os.environ["SPARK_HOME"])
globs = pyspark.pandas.indexes.multi.__dict__.copy()
globs["np"] = numpy
globs["ps"] = pyspark.pandas
spark = (
SparkSession.builder.master("local[4]")
.appName("pyspark.pandas.indexes.multi tests")
.getOrCreate()
)
(failure_count, test_count) = doctest.testmod(
pyspark.pandas.indexes.multi,
globs=globs,
optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE,
)
spark.stop()
if failure_count:
sys.exit(-1)
if __name__ == "__main__":
_test()