#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyspark.util import _parse_memory
[docs]class ExecutorResourceRequest(object):
"""
An Executor resource request. This is used in conjunction with the ResourceProfile to
programmatically specify the resources needed for an RDD that will be applied at the
stage level.
This is used to specify what the resource requirements are for an Executor and how
Spark can find out specific details about those resources. Not all the parameters are
required for every resource type. Resources like GPUs are supported and have same limitations
as using the global spark configs spark.executor.resource.gpu.*. The amount, discoveryScript,
and vendor parameters for resources are all the same parameters a user would specify through the
configs: spark.executor.resource.{resourceName}.{amount, discoveryScript, vendor}.
For instance, a user wants to allocate an Executor with GPU resources on YARN. The user has
to specify the resource name (gpu), the amount or number of GPUs per Executor,
the discovery script would be specified so that when the Executor starts up it can
discovery what GPU addresses are available for it to use because YARN doesn't tell
Spark that, then vendor would not be used because its specific for Kubernetes.
See the configuration and cluster specific docs for more details.
Use :py:class:`pyspark.ExecutorResourceRequests` class as a convenience API.
.. versionadded:: 3.1.0
Parameters
----------
resourceName : str
Name of the resource
amount : str
Amount requesting
discoveryScript : str, optional
Optional script used to discover the resources. This is required on some
cluster managers that don't tell Spark the addresses of the resources
allocated. The script runs on Executors startup to discover the addresses
of the resources available.
vendor : str, optional
Vendor, required for some cluster managers
Notes
-----
This API is evolving.
"""
def __init__(self, resourceName, amount, discoveryScript="", vendor=""):
self._name = resourceName
self._amount = amount
self._discovery_script = discoveryScript
self._vendor = vendor
@property
def resourceName(self):
return self._name
@property
def amount(self):
return self._amount
@property
def discoveryScript(self):
return self._discovery_script
@property
def vendor(self):
return self._vendor
[docs]class ExecutorResourceRequests(object):
"""
A set of Executor resource requests. This is used in conjunction with the
:class:`pyspark.resource.ResourceProfileBuilder` to programmatically specify the
resources needed for an RDD that will be applied at the stage level.
.. versionadded:: 3.1.0
Notes
-----
This API is evolving.
"""
_CORES = "cores"
_MEMORY = "memory"
_OVERHEAD_MEM = "memoryOverhead"
_PYSPARK_MEM = "pyspark.memory"
_OFFHEAP_MEM = "offHeap"
def __init__(self, _jvm=None, _requests=None):
from pyspark import SparkContext
_jvm = _jvm or SparkContext._jvm
if _jvm is not None:
self._java_executor_resource_requests = \
_jvm.org.apache.spark.resource.ExecutorResourceRequests()
if _requests is not None:
for k, v in _requests.items():
if k == self._MEMORY:
self._java_executor_resource_requests.memory(str(v.amount))
elif k == self._OVERHEAD_MEM:
self._java_executor_resource_requests.memoryOverhead(str(v.amount))
elif k == self._PYSPARK_MEM:
self._java_executor_resource_requests.pysparkMemory(str(v.amount))
elif k == self._CORES:
self._java_executor_resource_requests.cores(v.amount)
else:
self._java_executor_resource_requests.resource(v.resourceName, v.amount,
v.discoveryScript, v.vendor)
else:
self._java_executor_resource_requests = None
self._executor_resources = {}
def memory(self, amount):
if self._java_executor_resource_requests is not None:
self._java_executor_resource_requests.memory(amount)
else:
self._executor_resources[self._MEMORY] = ExecutorResourceRequest(self._MEMORY,
_parse_memory(amount))
return self
def memoryOverhead(self, amount):
if self._java_executor_resource_requests is not None:
self._java_executor_resource_requests.memoryOverhead(amount)
else:
self._executor_resources[self._OVERHEAD_MEM] = \
ExecutorResourceRequest(self._OVERHEAD_MEM, _parse_memory(amount))
return self
def pysparkMemory(self, amount):
if self._java_executor_resource_requests is not None:
self._java_executor_resource_requests.pysparkMemory(amount)
else:
self._executor_resources[self._PYSPARK_MEM] = \
ExecutorResourceRequest(self._PYSPARK_MEM, _parse_memory(amount))
return self
def offheapMemory(self, amount):
if self._java_executor_resource_requests is not None:
self._java_executor_resource_requests.offHeapMemory(amount)
else:
self._executor_resources[self._OFFHEAP_MEM] = \
ExecutorResourceRequest(self._OFFHEAP_MEM, _parse_memory(amount))
return self
def cores(self, amount):
if self._java_executor_resource_requests is not None:
self._java_executor_resource_requests.cores(amount)
else:
self._executor_resources[self._CORES] = ExecutorResourceRequest(self._CORES, amount)
return self
def resource(self, resourceName, amount, discoveryScript="", vendor=""):
if self._java_executor_resource_requests is not None:
self._java_executor_resource_requests.resource(resourceName, amount, discoveryScript,
vendor)
else:
self._executor_resources[resourceName] = \
ExecutorResourceRequest(resourceName, amount, discoveryScript, vendor)
return self
@property
def requests(self):
if self._java_executor_resource_requests is not None:
result = {}
execRes = self._java_executor_resource_requests.requestsJMap()
for k, v in execRes.items():
result[k] = ExecutorResourceRequest(v.resourceName(), v.amount(),
v.discoveryScript(), v.vendor())
return result
else:
return self._executor_resources
[docs]class TaskResourceRequest(object):
"""
A task resource request. This is used in conjunction with the
:class:`pyspark.resource.ResourceProfile` to programmatically specify the resources
needed for an RDD that will be applied at the stage level. The amount is specified
as a Double to allow for saying you want more than 1 task per resource. Valid values
are less than or equal to 0.5 or whole numbers.
Use :class:`pyspark.resource.TaskResourceRequests` class as a convenience API.
Parameters
----------
resourceName : str
Name of the resource
amount : float
Amount requesting as a float to support fractional resource requests.
Valid values are less than or equal to 0.5 or whole numbers.
.. versionadded:: 3.1.0
Notes
-----
This API is evolving.
"""
def __init__(self, resourceName, amount):
self._name = resourceName
self._amount = float(amount)
@property
def resourceName(self):
return self._name
@property
def amount(self):
return self._amount
[docs]class TaskResourceRequests(object):
"""
A set of task resource requests. This is used in conjunction with the
:class:`pyspark.resource.ResourceProfileBuilder` to programmatically specify the resources
needed for an RDD that will be applied at the stage level.
.. versionadded:: 3.1.0
Notes
-----
This API is evolving.
"""
_CPUS = "cpus"
def __init__(self, _jvm=None, _requests=None):
from pyspark import SparkContext
_jvm = _jvm or SparkContext._jvm
if _jvm is not None:
self._java_task_resource_requests = \
SparkContext._jvm.org.apache.spark.resource.TaskResourceRequests()
if _requests is not None:
for k, v in _requests.items():
if k == self._CPUS:
self._java_task_resource_requests.cpus(int(v.amount))
else:
self._java_task_resource_requests.resource(v.resourceName, v.amount)
else:
self._java_task_resource_requests = None
self._task_resources = {}
def cpus(self, amount):
if self._java_task_resource_requests is not None:
self._java_task_resource_requests.cpus(amount)
else:
self._task_resources[self._CPUS] = TaskResourceRequest(self._CPUS, amount)
return self
def resource(self, resourceName, amount):
if self._java_task_resource_requests is not None:
self._java_task_resource_requests.resource(resourceName, float(amount))
else:
self._task_resources[resourceName] = TaskResourceRequest(resourceName, amount)
return self
@property
def requests(self):
if self._java_task_resource_requests is not None:
result = {}
taskRes = self._java_task_resource_requests.requestsJMap()
for k, v in taskRes.items():
result[k] = TaskResourceRequest(v.resourceName(), v.amount())
return result
else:
return self._task_resources