pyspark.pandas.DataFrame.skew¶
-
DataFrame.
skew
(axis: Union[int, str, None] = None, numeric_only: bool = None) → Union[int, float, bool, str, bytes, decimal.Decimal, datetime.date, datetime.datetime, None, Series]¶ Return unbiased skew normalized by N-1.
- Parameters
- axis{index (0), columns (1)}
Axis for the function to be applied on.
- numeric_onlybool, default None
Include only float, int, boolean columns. False is not supported. This parameter is mainly for pandas compatibility.
- Returns
- skewscalar for a Series, and a Series for a DataFrame.
Examples
>>> df = ps.DataFrame({'a': [1, 2, 3, np.nan], 'b': [0.1, 0.2, 0.3, np.nan]}, ... columns=['a', 'b'])
On a DataFrame:
>>> df.skew() a 0.000000e+00 b -3.319678e-16 dtype: float64
On a Series:
>>> df['a'].skew() 0.0