pyspark.pandas.
to_timedelta
Convert argument to timedelta.
The data to be converted to timedelta.
Denotes the unit of the arg for numeric arg. Defaults to "ns".
"ns"
Possible values: * ‘W’ * ‘D’ / ‘days’ / ‘day’ * ‘hours’ / ‘hour’ / ‘hr’ / ‘h’ * ‘m’ / ‘minute’ / ‘min’ / ‘minutes’ / ‘T’ * ‘S’ / ‘seconds’ / ‘sec’ / ‘second’ * ‘ms’ / ‘milliseconds’ / ‘millisecond’ / ‘milli’ / ‘millis’ / ‘L’ * ‘us’ / ‘microseconds’ / ‘microsecond’ / ‘micro’ / ‘micros’ / ‘U’ * ‘ns’ / ‘nanoseconds’ / ‘nano’ / ‘nanos’ / ‘nanosecond’ / ‘N’
Must not be specified when arg context strings and errors="raise".
errors="raise"
If ‘raise’, then invalid parsing will raise an exception.
If ‘coerce’, then invalid parsing will be set as NaT.
If ‘ignore’, then invalid parsing will return the input.
See also
DataFrame.astype
Cast argument to a specified dtype.
to_datetime
Convert argument to datetime.
Notes
If the precision is higher than nanoseconds, the precision of the duration is truncated to nanoseconds for string inputs.
Examples
Parsing a single string to a Timedelta:
>>> ps.to_timedelta('1 days 06:05:01.00003') Timedelta('1 days 06:05:01.000030') >>> ps.to_timedelta('15.5us') Timedelta('0 days 00:00:00.000015500')
Parsing a list or array of strings:
>>> ps.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan']) TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015500', NaT], dtype='timedelta64[ns]', freq=None)
Converting numbers by specifying the unit keyword argument:
>>> ps.to_timedelta(np.arange(5), unit='s') TimedeltaIndex(['0 days 00:00:00', '0 days 00:00:01', '0 days 00:00:02', '0 days 00:00:03', '0 days 00:00:04'], dtype='timedelta64[ns]', freq=None) >>> ps.to_timedelta(np.arange(5), unit='d') TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)