# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Any, Optional, Union, cast import pandas as pd from pandas.api.types import is_hashable # type: ignore[attr-defined] from pyspark import pandas as ps from pyspark.pandas._typing import Dtype, Name from pyspark.pandas.indexes.base import Index from pyspark.pandas.series import Series class NumericIndex(Index): """ Provide numeric type operations. This is an abstract class. """ pass class IntegerIndex(NumericIndex): """ This is an abstract class for Int64Index. """ pass [docs]class Int64Index(IntegerIndex): """ Immutable sequence used for indexing and alignment. The basic object storing axis labels for all pandas objects. Int64Index is a special case of `Index` with purely integer labels. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: int64) copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. See Also -------- Index : The base pandas-on-Spark Index type. Float64Index : A special case of :class:`Index` with purely float labels. Notes ----- An Index instance can **only** contain hashable objects. Examples -------- >>> ps.Int64Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') From a Series: >>> s = ps.Series([1, 2, 3], index=[10, 20, 30]) >>> ps.Int64Index(s) Int64Index([1, 2, 3], dtype='int64') From an Index: >>> idx = ps.Index([1, 2, 3]) >>> ps.Int64Index(idx) Int64Index([1, 2, 3], dtype='int64') """ def __new__( cls, data: Optional[Any] = None, dtype: Optional[Union[str, Dtype]] = None, copy: bool = False, name: Optional[Name] = None, ) -> "Int64Index": if not is_hashable(name): raise TypeError("Index.name must be a hashable type") if isinstance(data, (Series, Index)): if dtype is None: dtype = "int64" return cast(Int64Index, Index(data, dtype=dtype, copy=copy, name=name)) return cast( Int64Index, ps.from_pandas(pd.Int64Index(data=data, dtype=dtype, copy=copy, name=name)) ) [docs]class Float64Index(NumericIndex): """ Immutable sequence used for indexing and alignment. The basic object storing axis labels for all pandas objects. Float64Index is a special case of `Index` with purely float labels. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: float64) copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. See Also -------- Index : The base pandas-on-Spark Index type. Int64Index : A special case of :class:`Index` with purely integer labels. Notes ----- An Index instance can **only** contain hashable objects. Examples -------- >>> ps.Float64Index([1.0, 2.0, 3.0]) Float64Index([1.0, 2.0, 3.0], dtype='float64') From a Series: >>> s = ps.Series([1, 2, 3], index=[10, 20, 30]) >>> ps.Float64Index(s) Float64Index([1.0, 2.0, 3.0], dtype='float64') From an Index: >>> idx = ps.Index([1, 2, 3]) >>> ps.Float64Index(idx) Float64Index([1.0, 2.0, 3.0], dtype='float64') """ def __new__( cls, data: Optional[Any] = None, dtype: Optional[Union[str, Dtype]] = None, copy: bool = False, name: Optional[Name] = None, ) -> "Float64Index": if not is_hashable(name): raise TypeError("Index.name must be a hashable type") if isinstance(data, (Series, Index)): if dtype is None: dtype = "float64" return cast(Float64Index, Index(data, dtype=dtype, copy=copy, name=name)) return cast( Float64Index, ps.from_pandas(pd.Float64Index(data=data, dtype=dtype, copy=copy, name=name)), ) def _test() -> None: import os import doctest import sys from pyspark.sql import SparkSession import pyspark.pandas.indexes.numeric os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.indexes.numeric.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]") .appName("pyspark.pandas.indexes.numeric tests") .getOrCreate() ) (failure_count, test_count) = doctest.testmod( pyspark.pandas.indexes.numeric, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()