spark.
to_table
Write the DataFrame into a Spark table. DataFrame.spark.to_table() is an alias of DataFrame.to_table().
DataFrame.spark.to_table()
DataFrame.to_table()
Table name in Spark.
Specifies the output data source format. Some common ones are:
‘delta’
‘parquet’
‘orc’
‘json’
‘csv’
‘overwrite’. Specifies the behavior of the save operation when the table exists already.
‘append’: Append the new data to existing data.
‘overwrite’: Overwrite existing data.
‘ignore’: Silently ignore this operation if data already exists.
‘error’ or ‘errorifexists’: Throw an exception if data already exists.
Names of partitioning columns
Column names to be used in Spark to represent pandas-on-Spark’s index. The index name in pandas-on-Spark is ignored. By default, the index is always lost.
Additional options passed directly to Spark.
See also
read_table
DataFrame.to_spark_io
DataFrame.spark.to_spark_io
DataFrame.to_parquet
Examples
>>> df = ps.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3
>>> df.to_table('%s.my_table' % db, partition_cols='date')