pyspark.ml.recommendation.
ALSModel
Model fitted by ALS.
New in version 1.4.0.
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getBlockSize()
getBlockSize
Gets the value of blockSize or its default value.
getColdStartStrategy()
getColdStartStrategy
Gets the value of coldStartStrategy or its default value.
getItemCol()
getItemCol
Gets the value of itemCol or its default value.
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
getUserCol()
getUserCol
Gets the value of userCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
read()
read
Returns an MLReader instance for this class.
recommendForAllItems(numUsers)
recommendForAllItems
Returns top numUsers users recommended for each item, for all items.
recommendForAllUsers(numItems)
recommendForAllUsers
Returns top numItems items recommended for each user, for all users.
recommendForItemSubset(dataset, numUsers)
recommendForItemSubset
Returns top numUsers users recommended for each item id in the input data set.
recommendForUserSubset(dataset, numItems)
recommendForUserSubset
Returns top numItems items recommended for each user id in the input data set.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setBlockSize(value)
setBlockSize
Sets the value of blockSize.
blockSize
setColdStartStrategy(value)
setColdStartStrategy
Sets the value of coldStartStrategy.
coldStartStrategy
setItemCol(value)
setItemCol
Sets the value of itemCol.
itemCol
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
setUserCol(value)
setUserCol
Sets the value of userCol.
userCol
transform(dataset[, params])
transform
Transforms the input dataset with optional parameters.
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
itemFactors
a DataFrame that stores item factors in two columns: id and features
params
Returns all params ordered by name.
rank
rank of the matrix factorization model
userFactors
a DataFrame that stores user factors in two columns: id and features
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
New in version 2.2.0.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
max number of recommendations for each item
pyspark.sql.DataFrame
a DataFrame of (itemCol, recommendations), where recommendations are stored as an array of (userCol, rating) Rows.
max number of recommendations for each user
a DataFrame of (userCol, recommendations), where recommendations are stored as an array of (itemCol, rating) Rows.
Returns top numUsers users recommended for each item id in the input data set. Note that if there are duplicate ids in the input dataset, only one set of recommendations per unique id will be returned.
New in version 2.3.0.
a DataFrame containing a column of item ids. The column name must match itemCol.
Returns top numItems items recommended for each user id in the input data set. Note that if there are duplicate ids in the input dataset, only one set of recommendations per unique id will be returned.
a DataFrame containing a column of user ids. The column name must match userCol.
New in version 3.0.0.
New in version 1.3.0.
input dataset
an optional param map that overrides embedded params.
transformed dataset
Attributes Documentation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param