Series.
count
Count non-NA cells for each column.
The values None, NaN are considered NA.
If 0 or ‘index’ counts are generated for each column. If 1 or ‘columns’ counts are generated for each row.
If True, include only float, int, boolean columns. This parameter is mainly for pandas compatibility.
See also
DataFrame.shape
Number of DataFrame rows and columns (including NA elements).
DataFrame.isna
Boolean same-sized DataFrame showing places of NA elements.
Examples
Constructing DataFrame from a dictionary:
>>> df = ps.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}, ... columns=["Person", "Age", "Single"]) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False
Notice the uncounted NA values:
>>> df.count() Person 5 Age 4 Single 5 dtype: int64
>>> df.count(axis=1) 0 3 1 2 2 3 3 3 4 3 dtype: int64
On a Series:
>>> df['Person'].count() 5
>>> df['Age'].count() 4