Series.
drop
Return Series with specified index labels removed.
Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.
Index labels to drop.
Redundant for application on Series, but index can be used instead of labels.
No change is made to the Series; use ‘index’ or ‘labels’ instead.
New in version 3.4.0.
For MultiIndex, level for which the labels will be removed.
If True, do operation inplace and return None
Series with specified index labels removed.
See also
Series.dropna
Examples
>>> s = ps.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64
Drop single label A
>>> s.drop('A') B 1 C 2 dtype: int64
Drop labels B and C
>>> s.drop(labels=['B', 'C']) A 0 dtype: int64
With ‘index’ rather than ‘labels’ returns exactly same result.
>>> s.drop(index='A') B 1 C 2 dtype: int64
>>> s.drop(index=['B', 'C']) A 0 dtype: int64
With ‘columns’, no change is made to the Series.
>>> s.drop(columns=['A']) A 0 B 1 C 2 dtype: int64
With ‘inplace=True’, do operation inplace and return None.
>>> s.drop(index=['B', 'C'], inplace=True) >>> s A 0 dtype: int64
Also support for MultiIndex
>>> midx = pd.MultiIndex([['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... [[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = ps.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64
>>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64
>>> s.drop(('lama', 'weight')) lama speed 45.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64
>>> s.drop([('lama', 'speed'), ('falcon', 'weight')]) lama weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64