GroupBy.
max
Compute max of group values.
New in version 3.3.0.
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data.
New in version 3.4.0.
The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
See also
pyspark.pandas.Series.groupby
pyspark.pandas.DataFrame.groupby
Examples
>>> df = ps.DataFrame({"A": [1, 2, 1, 2], "B": [True, False, False, True], ... "C": [3, 4, 3, 4], "D": ["a", "a", "b", "a"]})
>>> df.groupby("A").max().sort_index() B C D A 1 True 3 b 2 True 4 a
Include only float, int, boolean columns when set numeric_only True.
>>> df.groupby("A").max(numeric_only=True).sort_index() B C A 1 True 3 2 True 4
>>> df.groupby("D").max().sort_index() A B C D a 2 True 4 b 1 False 3
>>> df.groupby("D").max(min_count=3).sort_index() A B C D a 2.0 True 4.0 b NaN None NaN