plot.
scatter
Create a scatter plot with varying marker point size and color.
The coordinates of each point are defined by two dataframe columns and filled circles are used to represent each point. This kind of plot is useful to see complex correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other.
The column name or column position to be used as horizontal coordinates for each point.
The column name or column position to be used as vertical coordinates for each point.
(matplotlib-only).
Keyword arguments to pass on to pyspark.pandas.DataFrame.plot().
pyspark.pandas.DataFrame.plot()
plotly.graph_objs.Figure
Return an custom object when backend!=plotly. Return an ndarray when subplots=True (matplotlib-only).
backend!=plotly
subplots=True
See also
plotly.express.scatter
Scatter plot using multiple input data formats (plotly).
matplotlib.pyplot.scatter
Scatter plot using multiple input data formats (matplotlib).
Examples
Let’s see how to draw a scatter plot using coordinates from the values in a DataFrame’s columns.
>>> df = ps.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], ... [6.4, 3.2, 1], [5.9, 3.0, 2]], ... columns=['length', 'width', 'species']) >>> df.plot.scatter(x='length', y='width')
And now with dark scheme:
>>> df = ps.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], ... [6.4, 3.2, 1], [5.9, 3.0, 2]], ... columns=['length', 'width', 'species']) >>> fig = df.plot.scatter(x='length', y='width') >>> fig.update_layout(template="plotly_dark")