DataFrame.
notnull
Detects non-missing values for items in the current Dataframe.
This function takes a dataframe and indicates whether it’s values are valid (not missing, which is NaN in numeric datatypes, None or NaN in objects and NaT in datetimelike).
NaN
None
NaT
See also
DataFrame.isnull
Examples
>>> df = ps.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.notnull() 0 1 0 True True 1 True False 2 True False 3 True True
>>> df = ps.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df.notnull() 0 1 2 0 True True True 1 True False True