DataFrameReader.
json
Loads JSON files and returns the results as a DataFrame.
DataFrame
JSON Lines (newline-delimited JSON) is supported by default. For JSON (one record per file), set the multiLine parameter to true.
multiLine
true
If the schema parameter is not specified, this function goes through the input once to determine the input schema.
schema
New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
RDD
string represents path to the JSON dataset, or a list of paths, or RDD of Strings storing JSON objects.
pyspark.sql.types.StructType
an optional pyspark.sql.types.StructType for the input schema or a DDL-formatted string (For example col0 INT, col1 DOUBLE).
col0 INT, col1 DOUBLE
For the extra options, refer to Data Source Option for the version you use.
Examples
Write a DataFrame into a JSON file and read it back.
>>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... # Write a DataFrame into a JSON file ... spark.createDataFrame( ... [{"age": 100, "name": "Hyukjin Kwon"}] ... ).write.mode("overwrite").format("json").save(d) ... ... # Read the JSON file as a DataFrame. ... spark.read.json(d).show() +---+------------+ |age| name| +---+------------+ |100|Hyukjin Kwon| +---+------------+