pyspark.ml.fpm.
FPGrowthModel
Model fitted by FPGrowth.
New in version 2.2.0.
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getItemsCol()
getItemsCol
Gets the value of itemsCol or its default value.
getMinConfidence()
getMinConfidence
Gets the value of minConfidence or its default value.
getMinSupport()
getMinSupport
Gets the value of minSupport or its default value.
getNumPartitions()
getNumPartitions
Gets the value of numPartitions or its default value.
numPartitions
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setItemsCol(value)
setItemsCol
Sets the value of itemsCol.
itemsCol
setMinConfidence(value)
setMinConfidence
Sets the value of minConfidence.
minConfidence
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
transform(dataset[, params])
transform
Transforms the input dataset with optional parameters.
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
associationRules
DataFrame with four columns: * antecedent - Array of the same type as the input column.
freqItemsets
DataFrame with two columns: * items - Itemset of the same type as the input column.
minSupport
params
Returns all params ordered by name.
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
New in version 3.0.0.
New in version 1.3.0.
pyspark.sql.DataFrame
input dataset
an optional param map that overrides embedded params.
transformed dataset
Attributes Documentation
DataFrame with four columns: * antecedent - Array of the same type as the input column. * consequent - Array of the same type as the input column. * confidence - Confidence for the rule (DoubleType). * lift - Lift for the rule (DoubleType).
DataFrame with two columns: * items - Itemset of the same type as the input column. * freq - Frequency of the itemset (LongType).
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param