pyspark.RDD.groupByKey¶
-
RDD.
groupByKey
(numPartitions: Optional[int] = None, partitionFunc: Callable[[K], int] = <function portable_hash>) → pyspark.rdd.RDD[Tuple[K, Iterable[V]]][source]¶ Group the values for each key in the RDD into a single sequence. Hash-partitions the resulting RDD with numPartitions partitions.
New in version 0.7.0.
- Parameters
- numPartitionsint, optional
the number of partitions in new
RDD
- partitionFuncfunction, optional, default portable_hash
function to compute the partition index
- Returns
Notes
If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or aggregateByKey will provide much better performance.
Examples
>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.groupByKey().mapValues(len).collect()) [('a', 2), ('b', 1)] >>> sorted(rdd.groupByKey().mapValues(list).collect()) [('a', [1, 1]), ('b', [1])]