ERLANG

Mnesia

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.
Mnesia 4.20

October 19, 2021

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

October 19, 2021

1.1 Introduction

1 Mnesia User's Guide

The Mnesia application is a distributed Database Management System (DBMYS), appropriate for telecommunications
applications and other Erlang applications, which require continuous operation and exhibit soft real-time properties.

1.1 Introduction
The Mnesia application provides a heavy-duty real-time distributed database.

1.1.1 Scope

This User's Guide describes how to build Mnesia-backed applications, and how to integrate and use the Mnesia
database management system with OTP. Programming constructs are described, and numerous programming examples
areincluded to illustrate the use of Mnesia

This User's Guide is organized as follows:

e Mnesiaprovides an introduction to Mnesia.

e Getting Started introduces M nesia with an example database. Examples are included on how to start an Erlang
session, specify a Mnesia database directory, initialize a database schema, start Mnesia, and create tables. Initial
prototyping of record definitionsis also discussed.

* Build aMnesia Database more formally describes the steps introduced in the previous section, namely the
Mnesia functions that define a database schema, start Mnesia, and create the required tables.

e Transactions and Other Access Contexts describes the transactions properties that make Mnesiainto afault-
tolerant, real-time distributed database management system. This section also describes the concept of locking
to ensure consistency in tables, and "dirty operations”, or shortcuts, which bypass the transaction system to
improve speed and reduce overheads.

* Miscellaneous Mnesia Features describes features that enable the construction of more complex database
applications. These features include indexing, checkpoints, distribution and fault tolerance, disc-less nodes,
replica manipulation, local content tables, concurrency, and object-based programming in Mnesia.

* Mnesia System Information describes the files contained in the Mnesia database directory, database
configuration data, core and table dumps, as well as the functions used for backup, restore, fallback, and
disaster recovery.

e Combine Mnesiawith SNMP is a short section that outlines the integration between Mnesia and SNMP.

* Appendix A: Backup Callback Interfaceis aprogram listing of the default implementation of this facility.

e Appendix B: Activity Access Callback Interface is a program outlining one possible implementation of this
facility.

e Appendix C: Fragmented Table Hashing Callback Interface is a program outlining one possible implementation
of thisfacility.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, system development principles, and
database management systems.

Ericsson AB. All Rights Reserved.: Mnesia | 1

1.2 Overview

1.2 Overview

The management of datain telecommunications systems has many aspects of which some, but not al, are addressed by
traditional Database Management Systems (DBMSs). In particular, the high level of fault tolerance required in many
nonstop systems, combined with requirements on the DBM S to run in the same address space as the applications, have
led usto implement anew DBMS, called Mnesia.

Mnesia is implemented in, and tightly coupled to Erlang. It provides the functionality that is necessary for the
implementation of fault-tolerant telecommunications systems.

Mnesia is a multiuser distributed DBM S specifically designed for industrial-grade telecommunications applications
written in Erlang, which is also the intended target language. Mnesia tries to address all the data management issues
required for typical telecommunications systems and has a number of features not normally found in traditional
DBMSs.

Telecommuni cations applications need amix of abroad range of featuresgenerally not provided by traditional DBM Ss.
Mnesiais designed to meet requirements such as:

e Fast real-time key-value lookup

e Complex non-real-time queries (mainly for operation and maintenance tasks)

» Distributed data (due to the distributed nature of the applications)

e High fault tolerance

e Dynamic reconfiguration

» Complex objects

Mnesia addresses the typical datamanagement issues required for telecommunications applications which setsit apart
from most other DBMSs. It combines many concepts found in traditional DBM Ss, such as transactions and queries,
with concepts found in data management systems for telecommunications applications such as:

» Fast real-time operations

« Configurable replication for fault tolerance

* Dynamic reconfiguration without service disruption

Mnesiaisalso unique dueto itstight coupling to Erlang. It aimost turns Erlang into a database programming language,

which yields many benefits. The foremost isthat the impedance mismatch between the dataformat used by the DBMS
and the data format used by the programming language, which is used to manipulate the data, completely disappears.

1.2.1 The Mnesia Database Management System

Features

Mnesia has the following features that combine to produce a fault-tolerant distributed database management system
(DBMS) written in Erlang:

» Database schema can be dynamically reconfigured at runtime.

e Tables can be declared to have properties such as location, replication, and persistence.

« Tables can be moved or replicated to several nodes to improve fault tolerance. Other nodes in the system can
still access the tables to read, write, and delete records.

» Tablelocations are transparent to the programmer. Programs address table names and the system itself keeps
track of table locations.

e Transactions can be distributed and multiple operations can be executed within a single transaction.

* Multiple transactions can run concurrently and their execution is fully synchronized by Mnesia, ensuring that no
two processes manipulate the same data simultaneously.

e Transactions can be assigned the property of being executed on al nodesin the system, or on none.

2 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

» Transactions can be bypassed using dirty operations, which reduce overheads and run fast.
All of the above features are described in detail in the coming sections.

Query List Comprehension

Query List Comprehension (QLC) can be used with Mnesia to produce specialized functions that enhance its

operational ability. QLC hasits own documentation as part of the OTP documentation set. The main QL C advantages

when used with Mnesia are:

* QLC can optimize the query compiler for Mnesia, essentially making the system more efficient.

e QLC can be used as a database programming language for Mnesia. It includes a notation called list
comprehensions which can be used to execute complex database queries over a set of tables.

For more information about QL C, please see the glc manual pagein STDLIB.

When to Use Mnesia
Mnesiaisagreat fit for applications that:

* Needtoreplicate data.

e Perform complex data queries.

* Need to use atomic transactions to safely update several records simultaneously.
* Require soft real-time characteristics.

Mnesiais not as appropriate for applications that:

* Processplain text or binary datafiles.

* Merely need alookup dictionary that can be stored on disc. Such applications may use the standard library
module det s, which isadisc-based version of the et s module. For more information about det s, please see
the dets manual pagein STDLIB.

* Need disc logging facilities. Such applications may use the module di sk_| og. For more information about
di sk_I| og, please see the disk_|log manual pagein Kernel.

* Require hard real-time characteristics.

1.3 Getting Started

This section introduces Vnesi a with an example database. This example is referenced in the following sections,
wherethe exampleismodified toillustrate various program constructs. This sectionillustratesthe following mandatory
procedures through examples:

» Starting the Erlang session.

* Specifying the VMhesi a directory where the database is to be stored.

» Initializing a new database schemawith an attribute that specifies on which node, or nodes, that database is to
operate.

e Starting Mhesi a.
» Creating and populating the database tables.

1.3.1 Starting Mnesia for the First Time

This section provides a simplified demonstration of a Vhesi a system startup. The dialogue from the Erlang shell
isasfollows:

Ericsson AB. All Rights Reserved.: Mnesia | 3

1.3 Getting Started

unix> erl -mnesia dir '"/tmp/funky"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)
1>
1> mnesia:create schema([node()]).
ok
2> mnesia:start().
ok
3> mnesia:create table(funky, []1).
{atomic, ok}
4> mnesia:info().
--> Processes holding locks <---
Processes waiting for locks <---
Pending (remote) transactions <---
Active (local) transactions <---
Uncertain transactions <---
-- Active tables <---
funky : with 0 records occupying 269 words of mem
schema : with 2 records occupying 353 words of mem
===> System info in version "1.0", debug level = none <===
opt disc. Directory "/tmp/funky" is used.
use fall-back at restart = false

VVVYV

\

running db nodes = [nonode@nohost]
stopped db nodes = []

remote =[]

ram_copies = [funky]
disc_copies = [schema]

disc_only copies []

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] = [funky]

1 transactions committed, O aborted, 0 restarted, 1 logged to disc
0 held locks, O in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

In this example, the following actions are performed:

e Step 1: The Erlang system is started from the UNIX prompt with aflag - mesi a dir [trmp/ funky"",

which indicates in which directory to store the data.

e Step 2: A new empty schemaisinitialized on the local node by evaluating mnesia:create_schema([node()]).
The schema contains information about the database in general. Thisis explained in detail later.

e Step 3: The DBMSis started by evaluating mnesia:start().

e Step 4: Afirsttableis created, called f unky, by evauating the expression
mmesi a: create_tabl e(funky, []).Thetableisgiven default properties.

* Step 5: mnesiaiinfo() is evaluated to display information on the terminal about the status of the database.

1.3.2 Example

A Mnesi a database is organized as a set of tables. Each table is populated with instances (Erlang records). A table
has also a number of properties, such as location and persistence.

Database
This example shows how to create a database called Conpany and the relationships shown in the following diagram:

4 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

RS (i

Tept Emplepee Froject

Figure 3.1: Company Entity-Relation Diagram

The database model is as follows:

* Therearethree entities: department, employee, and project.
e There are three relationships between these entities:

« A department is managed by an employee, hence the nanager relationship.
e Anemployee works at a department, hence the at _dep relationship.
» Each employee works on a number of projects, hencethei n_pr oj relationship.

Defining Structure and Content

First the record definitions are entered into atext filenamed conpany. hr | . Thisfile definesthe following structure
for the exampl e database:

-record(employee, {emp no,
name,
salary,
sex,
phone,
room no}).

-record(dept, {id,
name}).

-record(project, {name,
number}).

-record(manager, {emp,
dept}).

-record(at_dep, {emp,
dept id})

-record(in_proj, {emp,
proj_name}).

The structure defines six tablesin the database. In Mhesi a, the function mnesia:create_table(Name, ArgList) creates
tables. Nane is the table name.

Ericsson AB. All Rights Reserved.: Mnesia | 5

1.3 Getting Started

The current version of Mhesi a does not require that the name of the table is the same as the record name, see
Record Names versus Table Names..

For example, the table for employees is created with the function mMmesi a: cr eat e_t abl e(enpl oyee,
[{attributes, record_info(fields, enployee)}]).Thetablenameenpl oyee matchesthe name
for records specified in Ar gLi st . Theexpressionr ecord_i nf o(fi el ds, Recor dNane) isprocessed by the
Erlang preprocessor and evaluatesto a list containing the names of the different fields for a record.

Program
The following shell interaction starts Vnesi a and initializes the schemafor the Conpany database:

% erl -mnesia dir '"/ldisc/scratch/Mnesia.Company
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with "G)

1> mnesia:create schema([node()]).
ok

2> mnesia:start().

ok

The following program modul e creates and popul ates previously defined tables:

-include lib("stdlib/include/qlc.hrl").
-include("company.hrl").

init() ->
mnesia:create table(employee,
[{attributes, record info(fields, employee)}]),
mnesia:create table(dept,
[{attributes, record info(fields, dept)}]),
mnesia:create table(project,
[{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},
{attributes, record info(fields, manager)}]),
mnesia:create table(at dep,
[{attributes, record info(fields, at dep)}l),
mnesia:create table(in proj, [{type, bag},
{attributes, record info(fields, in proj)}1).

Program Explained
The following commands and functions are used to initiate the Conpany database:

e %erl -mesia dir '""/ldisc/scratch/ Vesia. Conpany"' . ThisisaUNIX command-
line entry that starts the Erlang system. Theflag - mesi a dir Di r specifiesthe location of the database
directory. The system responds and waits for further input with the prompt 1>.

* mnesiacreate_schema([node()]). This function has the format
mesi a: cr eat e_schenma(Di scNodeli st) andinitiates anew schema. In this example, a non-
distributed system using only one node is created. Schemas are fully explained in Define a Schema.

* mnesiastart(). Thisfunction starts Mnesi a and isfully explained in Start Mnesia.
Continuing the dialogue with the Erlang shell produces the following:

6 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

3> company:init().

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

---> Processes waiting for locks <---

---> Pending (remote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

in _proj : with 0 records occuping 269 words of mem

at dep : with 0@ records occuping 269 words of mem
manager : with 0 records occuping 269 words of mem
project : with 0 records occuping 269 words of mem
dept : with 0 records occuping 269 words of mem
employee : with 0 records occuping 269 words of mem

schema : with 7 records occuping 571 words of mem

===> System info in version "1.0", debug level = none <===

opt disc. Directory "/ldisc/scratch/Mnesia.Company" is used.

use fall-back at restart = false

running db nodes [nonode@nohost]

stopped db nodes [1

remote [

ram_copies =
[at dep,dept,employee,in proj,manager,project]

disc_copies = [schema]

disc_only copies = []

[{nonode@nohost,disc copies}] = [schema]

[{nonode@nohost, ram copies}] =
[employee,dept,project,manager,at dep,in projl

6 transactions committed, 0 aborted, 0 restarted, 6 logged to disc

0 held locks, O in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

A set of tablesis created. The function mnesia:create table(Name, ArgList) creates the required database tables. The
options available with Ar gLi st are explained in Create New Tables.

The function conpany: i ni t / O creates the tables. Two tables are of type bag. Thisisthe manager relation as
well thei n_proj relation. Thisis interpreted as. an employee can be manager over several departments, and an
employee can participate in several projects. However, theat _dep relationisset , asan employee can only work in
one department. In this data model, there are examples of relations that are 1-to-1 (set) and 1-to-many (bag).

mnesiaiinfo() now indicates that a database has seven local tables, where six are the user-defined tables and oneisthe
schema. Six transactions have been committed, as six successful transactions were run when creating the tables.

To write a function that inserts an employee record into the database, there must be an at _dep record and a set of
i n_proj recordsinserted. Examine the following code used to compl ete this action:

Ericsson AB. All Rights Reserved.: Mnesia | 7

1.3 Getting Started

insert _emp(Emp, DeptId, ProjNames) ->

Ename = Emp#employee.name,

Fun = fun() ->
mnesia:write(Emp),
AtDep = #at dep{emp = Ename, dept id = DeptId},
mnesia:write(AtDep),
mk _projs(Ename, ProjNames)

end,
mnesia:transaction(Fun).

mk _projs(Ename, [ProjName|Tail]) ->
mnesia:write(#in proj{emp = Ename, proj name = ProjName}),
mk _projs(Ename, Tail);

mk_projs(_, []1) -> ok.

e Theinsert enp/ 3 argumentsare asfollows:

e Enp isan employee record.
e Dept | distheidentity of the department where the employee works.
* Proj Nanes isalist of the names of the projects where the employee works.

Thefunctioni nsert _enp/ 3 creates a Functional Object (Fun). Fun is passed as a single argument to the function
mnesiatransaction(Fun). This means that Fun is run as a transaction with the following properties:

* A Fun either succeeds or fails.

* Code that manipulates the same data records can be run concurrently without the different processes interfering
with each other.

The function can be used as follows:

Emp = #employee{emp no= 104732,
name = klacke,
salary = 7,
sex = male,
phone = 98108,
room_no = {221, 015}},
insert emp(Emp, 'B/SFR', [Erlang, mnesia, otp]).

For information about Funs, see "Fun Expressions' in section Er| ang Ref erence Manual in System
Documentation..

Initial Database Content

After the insertion of the employee named k| acke, the database has the following records:

emp_no name saary Sex phone room_no

104732 klacke 7 male 98108 {221, 015}

Table 3.1: employee Database Record

Thisenpl oyee record hasthe Erlang record/tuplerepresentation { enpl oyee, 104732, kl acke, 7, mal e,
98108, {221, 015}}.

8 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

emp dept_name

klacke B/SFR

Table 3.2: at_dep Database Record

Thisat _dep record hasthe Erlang tuple representation { at _dep, kl acke, ' B/ SFR }.

emp proj_name
klacke Erlang
klacke otp
klacke mnesia

Table 3.3: in_proj Database Record

This i n_proj record has the Erlang tuple representation {i n_proj, klacke, 'Erlang , klacke,
"otp', klacke, 'mmesia'}.

There is no difference between rows in a table and Vnhesi a records. Both concepts are the same and are used
interchangeably throughout this User's Guide.

A Mesi atableispopulated by Mhesi a records. For example, thetuple{ boss, kl acke, bj arne} isarecord.
The second element in thistupleisthe key. To identify atable uniquely, both the key and the table nameisneeded. The
term Object Identifier (OID) is sometimes used for the arity two tuple { Tab, Key}. The OID for the record { boss,
kl acke, bjarne} isthe arity two tuple { boss, Kkl acke}. The first element of the tuple is the type of the
record and the second element is the key. An OID can lead to zero, one, or more records depending on whether the
tabletypeisset or bag.

Therecord { boss, Kkl acke, bjarne} canalsobeinserted. Thisrecord containsanimplicit reference to another
employee that does not yet exist in the database. Mhesi a does not enforce this.

Adding Records and Relationships to Database
After adding more records to the Conpany database, the result can be the following records:

enpl oyees:

{employee, 104465, "Johnson Torbjorn", 1, male, 99184, {242,038}}.
{employee, 107912, "Carlsson Tuula", 2, female, 94556, {242,056}}.
{employee, 114872, "Dacker Bjarne", 3, male, 99415, {221,035}}.
{employee, 104531, "Nilsson Hans", 3, male, 99495, {222,026}}.
{employee, 104659, "Tornkvist Torbjorn", 2, male, 99514, {222,022}}.
{employee, 104732, "Wikstrom Claes", 2, male, 99586, {221,015}}.
{employee, 117716, "Fedoriw Anna", 1, female, 99143, {221,031}}.
3,

{employee, 115018, "Mattsson Hakan", male, 99251, {203,348}}.

dept:
{dept, 'B/SF', "Open Telecom Platform"}.
{dept, 'B/SFP', "OTP - Product Development"}.
{dept, 'B/SFR', "Computer Science Laboratory"}.
proj ects:

Ericsson AB. All Rights Reserved.: Mnesia | 9

1.3 Getting Started

%% projects

{project, erlang, 1}.
{project, otp, 2}.

{project, beam, 3}.
{project, mnesia, 5}.
{project, wolf, 6}.
{project, documentation, 7}.
{project, www, 8}.

Thesethreetables, enpl oyees, dept , and pr oj ect s, aremade up of real records. Thefollowing database content
isstored in the tables and is built on relationships. These tablesare manager , at _dep,andi n_proj .

manager :

{manager, 104465, 'B/SF'}.
{manager, 104465, 'B/SFP'}.
{manager, 114872, 'B/SFR'}.

at _dep:

{at_dep, 104465, 'B/SF'}.
{at_dep, 107912, 'B/SF'}.
{at dep, 114872, 'B/SFR'}.
{at dep, 104531, 'B/SFR'}.
{at dep, 104659, 'B/SFR'}.
{at dep, 104732, 'B/SFR'}.
{at dep, 117716, 'B/SFP'}.
{at dep, 115018, 'B/SFP'}.

in_proj:

{in_proj, 104465, otp}.
{in_proj, 107912, otp}.
{in_proj, 114872, otp}.
{in_proj, 104531, otp}.
{in_proj, 104531, mnesia}.
{in_proj, 104545, wolf}.
{in_proj, 104659, otp}.
{in_proj, 104659, wolf}.
{in_proj, 104732, otp}.
{in_proj, 104732, mnesia}.
{in _proj, 104732, erlang}.
{in_proj, 117716, otp}.
{in_proj, 117716, documentation}.
{in_proj, 115018, otp}.
{in_proj, 115018, mnesia}.

The room number is an attribute of the employee record. Thisisastructured attribute that consists of atuple. The first
element of the tuple identifies a corridor, and the second element identifies the room in that corridor. An aternativeis
to represent thisasarecord - r ecord(room {corr, no}). instead of an anonymous tuple representation.

The Conpany database is now initialized and contains data.
Writing Queries

Retrieving datafrom DBMS is usually to be done with the functions mnesia:read/3 or mnesia:read/1. The following
function raises the salary:

10 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write(New)

end,
mnesia:transaction(F).

Since it is desired to update the record using the function mnesiawrite/1 after the salary has been increased, a write
lock (third argument to r ead) is acquired when the record from the table is read.

To read the values from the table directly is not always possible. It can be needed to search one or more tables to
get the wanted data, and this is done by writing database queries. Queries are always more expensive operations than
direct lookups done with mesi a: r ead. Therefore, avoid queriesin performance-critical code.

Two methods are available for writing database queries:

e Mhesi a functions
« QLC
Using Mnesia Functions

The following function extracts the names of the female employees stored in the database:

mnesia:select(employee, [{#employee{sex = female, name = '$1', ="' '},[1, ['$1'1}]1).

sel ect must always run within an activity, such as a transaction. The following function can be constructed to call
from the shell:

all females() ->

F = fun() ->
Female = #employee{sex = female, name = '$1', ="' "},
mnesia:select(employee, [{Female, []1, ['$1'1}])
end,

mnesia:transaction(F).

Thesel ect expression matches al entriesin table employee with thefield sex setto f emal e.
This function can be called from the shell as follows:

(klacke@gin)1> company:all females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

For adescription of sel ect and its syntax, see Pattern Matching.
Using QLC

This section contains simple introductory examples only. For a full description of the QLC query language, see the
glc manual pagein STDLI B.

Using QL C can be more expensive than using Mhesi a functions directly but offers a nice syntax.

The following function extracts alist of female employees from the database:

Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == femalel),
qlc:e(Q),

Accessing Mhesi a tables from a QL C list comprehension must always be done within a transaction. Consider the
following function:

Ericsson AB. All Rights Reserved.: Mnesia | 11

1.4 Build a Mnesia Database

females() ->

F = fun() ->
Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == female]),
qlc:e(Q)
end,

mnesia:transaction(F).

This function can be called from the shell as follows:

(klacke@gin)1> company:females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

In traditional relational database terminology, this operation is called a selection, followed by a projection.
The previous list comprehension expression contains a number of syntactical elements:

e Thefirst[bracketisread as"build thelist".
e The| | "suchthat" and the arrow <- isread as "taken from".

Hence, the previous list comprehension demonstrates the formation of the list E#enpl oyee. nane such that E is
taken from the table of employees, and attribute sex of each record is equal to theatom f emal e.

The whole list comprehension must be given to the functiongl c: g/ 1.

List comprehensions with low-level Mhesi a functions can be combined in the same transaction. To raise the salary
of al female employees, execute the following:

raise females(Amount) ->
F = fun() ->
Q = qlc:q([E || E <- mnesia:table(employee),
E#employee.sex == femalel),
Fs = gqlc:e(Q),
over write(Fs, Amount)
end,
mnesia:transaction(F).

over write([E|Tail], Amount) ->
Salary = E#employee.salary + Amount,
New = E#employee{salary = Salary},
mnesia:write(New),
1 + over write(Tail, Amount);

over write([],) ->
0.

Thefunctionr ai se_f enmal es/ 1 returnsthetuple{ at om ¢, Nunber},whereNunber isthe number of femae
employees who received a salary increase. If an error occurs, the value { abort ed, Reason} is returned, and
Mhesi a guarantees that the salary is not raised for any employee.

Example:

33>company:raise females(33).
{atomic, 2}

1.4 Build a Mnesia Database

This section describes the basic steps when designing aMnhesi a database and the programming constructs that make
different solutions available to the programmer. The following topics are included:

* Define aschema

12 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

« Datamodel
« Start Mhesi a
¢ Createtables

1.4.1 Define a Schema

Theconfiguration of aMhesi a systemisdescribed in aschema. The schemaisaspecial tablethat includesinformation
such as the table names and the storage type of each table (that is, whether atable is to be stored in RAM, on disc,
or on both, aswell asitslocation).

Unlike data tables, information in schema tables can only be accessed and modified by using the schema-related
functions described in this section.

Mhesi a hasvariousfunctionsfor defining the database schema. Tables can be moved or deleted, and the table layout
can be reconfigured.

Animportant aspect of these functionsisthat the system can access atable whileit isbeing reconfigured. For example,
it is possible to move a table and simultaneously perform write operations to the same table. This feature is essential
for applications that require continuous service.

This section describes the functions available for schema management, all which return either of the following tuples:

« {atomc, ok} ifsuccessful
« {aborted, Reason} if unsuccessful

Schema Functions
The schema functions are as follows:

 mnesiacreate_schema(NodeList) initializes a new, empty schema. Thisisamandatory requirement before
Mhesi a can be started. Mhesi a isatruly distributed DBMS and the schemais a system table that is replicated
on al nodesinaMhesi a system. Thisfunction failsif aschemais already present on any of the nodesin
NodelLi st . The function requires Mhesi a to be stopped on the al db_nodes contained in parameter
NodelLi st . Applications call thisfunction only once, asit is usually aone-time activity to initialize a new
database.

 mnesiadelete schema(DiscNodelist) erases any old schemas on the nodesin Di scNodelLi st . It also
removes al old tables together with all data. This function requires Vhesi a to be stopped on al db_nodes.

 mnesiadelete table(Tab) permanently deletes all replicas of table Tab.

* mnesiaclear_table(Tab) permanently deletes all entriesin table Tab.

* mnesiamove_table copy(Tab, From, To) moves the copy of table Tab from node Fr omto node To. The table
storagetype{t ype} ispreserved, soif aRAM table is moved from one node to ancther, it remains a RAM
table on the new node. Other transactions can still perform read and write operation to the table while it is being
moved.

« mnesiaadd_table copy(Tab, Node, Type) creates areplicaof table Tab at node Node. Argument Ty pe must
be either of the atomsr am copi es, di sc_copi es, ordi sc_onl y_copi es. If you add acopy of the
system table schemma to anode, you want the Mhesi a schemato reside there aswell. This action extends the
set of nodes that comprise this particular Mhesi a system.

mnesiade_table copy(Tab, Node) deletes the replica of table Tab at node Node. When the last replica of a
table isremoved, the tableis deleted.

Ericsson AB. All Rights Reserved.: Mnesia | 13

1.4 Build a Mnesia Database

* mnesiatransform_table(Tab, Fun, NewAttributeList, NewRecordName) changestheformat on all recordsintable
Tab. It applies argument Fun to al records in the table. Fun must be a function that takes a record of the old
type, and returns the record of the new type. The table key must not be changed.

Example:

-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
fun(X) when record(X, old) ->
#new{key = X#old.key,
val = X#old.val,
extra = 42}
end,
{atomic, ok} = mnesia:transform table(foo, Transformer,
record info(fields, new),
new),

Argument Fun can also be the atom i gnor e, which indicates that only the metadata about the table is updated.
Useof i gnor e isnot recommended (as it creates inconsistencies between the metadata and the actual data) but
it isincluded as a possibility for the user do to an own (offline) transform.

e change_tabl e copy_type(Tab, Node, ToType) changesthe storage type of atable. For example,
aRAM tableischangedtoadi sc_t abl e at the node specified as Node.

1.4.2 Data Model

The data model employed by Mhesi a is an extended relational data model. Data is organized as a set of tables and
relations between different datarecords can be model ed as more tabl es describing the rel ationships. Each table contains
instances of Erlang records. The records are represented as Erlang tuples.

Each Object Identifier (OID) is made up of atable name and akey. For example, if an employee record is represented
by thetuple{ enpl oyee, 104732, klacke, 7, male, 98108, {221, 015}},thisrecord hasan OID,
whichisthetuple{ enpl oyee, 104732}.

Thus, each table is made up of records, where the first element is a record name and the second element of the table
is a key, which identifies the particular record in that table. The combination of the table name and akey is an arity
two tuple { Tab, Key} called the OID. For more information about the relationship beween the record name and
the table name, see Record Names versus Table Names.

What makes the Mhesi a datamodel an extended relational model is the ability to store arbitrary Erlang termsin the
attribute fields. One attribute value can, for example, be awhole tree of OIDs leading to other terms in other tables.
Thistype of record is difficult to model in traditional relational DBMSs.

1.4.3 Start Mnesia

Before starting Mhesi a, the following must be done:

* Anempty schemamust beinitialized on all the participating nodes.

e The Erlang system must be started.

* Nodes with disc database schema must be defined and implemented with the function
mnesia.create_schema(NodeL ist).

When running a distributed system with two or more participating nodes, the function mnesia:start() must be executed
on each participating node. This would typically be part of the boot script in an embedded environment. In a test
environment or an interactive environment, rmesi a: st art () can also be used either from the Erlang shell or
another program.

14 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

Initialize a Schema and Start Mnesia

Let us use the example database Conrpany, described in Getting Started to illustrate how to run a database on two
separate nodes, calleda@i n andb@keppet . Each of these nodes must haveavhesi a directory and aninitialized
schema before Mhesi a can be started. There are two ways to specify the Mhesi a directory to be used:

« Specify theivnesi a directory by providing an application parameter either when starting the Erlang shell or inthe
application script. Previously, the following example was used to create the directory for the Conpany database:

%erl -mnesia dir '"/ldisc/scratch/Mnesia.Company

* If no command-lineflag is entered, the Mnhesi a directory becomes the current working directory on the node
where the Erlang shell is started.

To start the Conpany database and get it running on the two specified nodes, enter the following commands:
e Onthenodea@i n:

gin %erl -sname a -mnesia dir '"/ldisc/scratch/Mnesia.company"'

e Onthenodeb@keppet:

skeppet %erl -sname b -mnesia dir '"/ldisc/scratch/Mnesia.company"'

¢ On one of the two nodes:

(a@gin)1l>mnesia:create schema([a@gin, b@skeppet]).

e Thefunction mnesia:start() is called on both nodes.
* Toinitialize the database, execute the following code on one of the two nodes:

dist init() ->
mnesia:create table(employee,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields,
employee)}]),
mnesia:create table(dept,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, dept)}]),
mnesia:create table(project,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},
{ram_copies, [a@gin, b@skeppet]},
{attributes, record info(fields,
manager)}1),
mnesia:create table(at dep,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, at dep)}]),
mnesia:create table(in proj,
[{type, bag},
{ram copies, [a@gin, b@skeppet]},
{attributes, record info(fields, in proj)}1).

Asillustrated, the two directories reside on different nodes, because/ | di sc/ scr at ch (the "local" disc) exists on
the two different nodes.

Ericsson AB. All Rights Reserved.: Mnesia | 15

1.4 Build a Mnesia Database

By executing these commands, two Erlang nodes are configured to run the Conrpany database, and therefore, initialize
the database. This is required only once when setting up. The next time the system is started, mnesia:start() is called
on both nodes, to initialize the system from disc.

Inasystem of Mhesi a nodes, every nodeisaware of the current location of al tables. Inthisexample, dataisreplicated
on both nodes and functions that manipulate the data in the tables can be executed on either of the two nodes. Code
that manipulate Mhesi a data behaves identically regardless of where the data resides.

The function mnesiastop() stops Mhesia on the node where the function is executed. The functions
mesi a: start/ 0 and mesi a: st op/ 0 work on the "local” Mnesi a system. No functions start or stop a set
of nodes.

Startup Procedure
Start Mhesi a by calling the following function:

mnesia:start().

Thisfunction initiates the DBM S locally.
The choice of configuration alters the location and load order of the tables. The alternatives are as follows:

e Tablesthat are only stored locally are initialized from the local WMnesi a directory.

* Replicated tables that reside locally as well as somewhere else are either initiated from disc or by copying the
entire table from the other node, depending on which of the different replicas are the most recent. Mhesi a
determines which of the tables are the most recent.

* Tablesthat reside on remote nodes are available to other nodes as soon as they are loaded.

Tableinitiaization is asynchronous. The function call mnesia:start() returns the atom ok and then starts to initialize
the different tables. Depending on the size of the database, this can take some time, and the application programmer
must wait for the tables that the application needs before they can be used. This is achieved by using the function
mnesiawait_for_tables(TabList, Timeout), which suspends the caller until all tables specified in TabLi st are
properly initiated.

A problem can arise if areplicated table on one node is initiated, but Mhesi a deduces that another (remote) replica
is more recent than the replica existing on the local node, and the initialization procedure does not proceed. In this
situation, acall to mnesiawait_for_tables/2, suspends the caller until the remote node has initialized the table from its
local disc and the node has copied the table over the network to the local node.

However, this procedure can be time-consuming, the shortcut function mnesia:force load table(Tab) loads all the
tables from disc at afaster rate. The function forces tables to be loaded from disc regardless of the network situation.

Thus, it can be assumed that if an application wants to use tables a and b, the application must perform some action
similar to following before it can use the tables:

case mnesia:wait for tables([a, b], 20000) of

{timeout, RemainingTabs} ->
panic(RemainingTabs);
ok ->
synced
end.

When tables are forcefully loaded from the local disc, all operations that were performed on the replicated table
while the local node was down, and the remote replicawas alive, are lost. This can cause the database to become
inconsistent.

16 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

If the startup procedure fails, the function mnesiastart() returns the cryptic tuple {error, { shut down,
{mesi a_sup,start_link,[normal,[]]}}}. To get more information about the start failure, use
command-line arguments - boot start_sasl asargumenttotheer| script.

1.4.4 Create Tables

The function mnesia:create_table(Name, ArgList) creates tables. When executing this function, it returns one of the
following responses:

« {atomc, ok} if thefunction executes successfully
« {aborted, Reason} if thefunctionfails

The function arguments are as follows:

« Nane isthe name of thetable. It is usually the same name as the name of the records that constitute the table.
For details, seer ecor d_nane.

Ericsson AB. All Rights Reserved.: Mnesia | 17

1.4 Build a Mnesia Database

* ArglLi st isalist of { Key, Val ue} tuples. The following arguments are valid:

{type, Type},where Type must be either of theatomsset , or der ed_set , or bag. Defaultisset .
Notice that currently or der ed_set isnot supported for di sc_onl y_copi es tables.

A tableof typeset oror der ed_set haseither zero or onerecord per key, whereas atable of typebag can
have an arbitrary number of records per key. The key for each record isalwaysthefirst attribute of the record.

The following example illustrates the difference between type set and bag:

f() ->
F = fun() ->
mnesia:write({foo, 1, 2}),
mnesia:write({foo, 1, 3}),
mnesia:read({foo, 1})
end,
mnesia:transaction(F).

This transaction returns the list [{f o0, 1, 3}] if table foo is of type set. However, the list
[{foo, 1,2}, {foo, 1, 3}] isreturned if thetableis of type bag.

Mhesi a tables can never contain duplicates of the same record in the same table. Duplicate records have
attributes with the same contents and key.
{di sc_copi es, NodeLi st},whereNodeli st isalistof thenodeswherethistableistoresideondisc.

Write operations to atable replica of typedi sc_copi es write datato the disc copy and to the RAM copy
of thetable.

It is possible to have a replicated table of type di sc_copi es on one node, and the same table