ERLANG

Kernel

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.
Kernel 8.1.1
October 19, 2021

Copyright © 1997-2021 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

October 19, 2021

1.1 Introduction

1 Kernel User's Guide

1.1 Introduction
1.1.1 Scope

TheKernd application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and soon.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
e Codeloading

e Logging

e Globa name service

* Supervision of Erlang/OTP

* Communication with sockets

e Operating system interface

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Socket Usage
1.2.1 Introduction

The socket interface (module) is basically a"thin" layer on top of the OS socket interface. It is assumed that, unless
you have special needs, gen_[tcpludp|sctp] should be sufficent (when they become available).

Note that just because we have a documented and described option, it does not mean that the OS supports it. So its
recommended that the user reads the platform specific documentation for the option used.
Asynchronous calls

Some functions alow for an asynchronous call (accept/ 2, connect/ 3, recv/ 3,4, recvfrom 3, 4,
recvimsg/ 2, 3, 5, send/ 3, 4, sendnsg/ 3, 4 and sendt o/ 4, 5). This is achieved by setting the Ti neout
argument to nowai t . For instance, if calling ther ecv/ 3 function with Timeout set to nowai t (i.e.r ecv(Sock,
0, nowai t))whenthereisactually nothingtoread, itwill returnwith{ sel ect, Sel ect| nf o} (Sel ectlnfo
containsthe Sel ect Handl e). When data eventually arrives a 'select message' will be sent to the caller:

{' $socket', socket(), select, SelectHandl e}
The caller can then make another call to the recv function and now expect data.

Note that all other users are locked out until the ‘current user' has called the function (recv in this case). So either
immediately call the function or cancel .

The user must also be prepared to receive an abort message:

Ericsson AB. All Rights Reserved.: Kernel | 1

1.2 Socket Usage

{' $socket', socket(), abort, Info}

If the operation is aborted for whatever reason (e.g. if the socket is closed "by someone else”). Thel nf o part contains
the abort reason (in this case that the socket hasbeen closed | nf o = {Sel ect Handl e, cl osed}).

The general form of the 'socket’ messageis:
{" $socket', Sock :: socket(), Tag :: aton(), Info :: tern()}
Where the format of | nf o isafunction of Tag:

Tag Info value type
select select_handle()
abort {select_handle(), Reason :: term()}

Table 2.1: socket message info value type

Thesel ect _handl e() isthesameaswasreturned inthe Sel ect | nf o.

1.2.2 Socket Registry

The socket registry is how we keep track of sockets. There are two functions that can be used for interaction:
socket : nunber _of/ 0 andsocket : whi ch_socket s/ 1.

In systems which create and delete many sockets dynamically, it (the socket registry) could become a bottleneck. For
such systems, there are a couple of ways to control the use of the socket registry.

Firstly, its possible to effect the global default value when building OTP from source with the two configure options:
--enable-esock-socket-registry (default) | --disable-esock-socket-registry

Second, its possible to effect the global default value by setting the environment variable
ESOCK_USE_SOCKET_REG STRY (boolean) before starting the erlang.

Third, its possible to alter the global default value in runtime by calling the functionuse_regi stry/ 1.
And finally, its possible to override the global default when creating a socket (with open/ 2 and open/ 4) by
providing the attribute use_r egi st ry (boolean) in the their Opt s argument (which effects that specific socket).

1.2.3 Socket Options

Optionsfor level ot p:

Other
Option Name Value Type Set Get Requirements and
comments
type = segpacket,
assoc_id integer() no yes protocol = sctp, isan

association

debug boolean() yes yes none

iow boolean() yes yes none

2 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

controlling_process | pid() yes yes none
‘default’ only valid
dsfsalij:tl 0 | for set. Thetuple
revbuf pos_Integ yes yes formisonly valid
{pos_integer(), \ :
0s ineteger()} for type 'stream' and
Pos_Ineteg protocol ‘tcp'.
revetribuf default | s s default only valid for
pos_integer() y y set
default | default only valid for
sndctrlbuf 0os integer() yes yes =t
fd integer() no yes none
the valueis set when
use_registr boolean() no es the socket is created,
-registty y by acall toopen/ 2
or open/ 4.
Table 2.2: option levels
Optionsfor level socket :
Other
Option Name Value Type Set Get Requirements and
comments
acceptconn boolean() no yes none
Before Linux 3.8,
this socket option
could be set, but
not get. Only works
bindtodevice string() yes yes for some socket
types (e.g.i net).
If empty valueis
set, the binding is
removed.
broadcast boolean() yes yes type = dgram
debu integer() es es may require admin
g €9 y y capability
domain domain() no s Not on FreeBSD (for
y instance)
dontroute boolean() yes yes none

Ericsson AB. All Rights Reserved.: Kernel | 3

1.2 Socket Usage

keepalive

boolean()

yes

yes

none

linger

abort | linger()

yes

yes

none

oobinline

boolean()

yes

yes

none

peek_off

integer()

yes

yes

domain = local
(unix). Currently
disabled dueto a
possibleinfinite
loop when calling
recv([peek]) the
second time.

priority

integer()

yes

yes

none

protocol

protocol ()

no

yes

Not on (some)
Darwin (for instance)

rcvbuf

non_neg_integer()

yes

yes

none

rcvliowat

non_neg_integer()

yes

yes

none

rcvtimeo

timeval()

yes

yes

Thisoptionis

not normally
supported (see why
below). OTP has

to be explicitly
built with the - -
enabl e- esock-
rcvsndti ne
configure option
for thisto be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,
or even if it may
cause malfunctions.
Therefor, we do

not recommend
setting this option.
Instead, use the

Ti meout argument
to, for instance, the
recv/ 3 function.

reuseaddr

boolean()

yes

yes

none

reuseport

boolean()

yes

yes

domain = inet | inet6

4 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

sndbuf non_neg_integer() yes yes none

not changeable on

sndlowat non_neg_integer() | yes yes Linux

Thisoptionis

not normally
supported (see why
below). OTP has

to be explicitly
built with the - -
enabl e- esock-
rcvsndti ne
configure option
for thisto be
available. Since our
implementation is
nonblocking, its
unknown if and how
this option works,
or even if it may
cause malfunctions.
Therefor, we do

not recommend
setting this option.
Instead, use the

Ti meout argument
to, for instance, the
send/ 3 function.

sndtimeo timeval() yes yes

timestamp boolean() yes yes none

type type() no yes none

Table 2.3: socket options

Optionsfor level i p:

Option Name Value Type Set Get gg;iriremmts and
comments

add_membership ip_mreq() yes no none

add _source_membershiip_mreq_source() yes no none

block _source ip_mreq_source() yes no none

drop_membership ip_mreq() yes no none

drop_source_membershjp mreq_source() yes no none

Ericsson AB. All Rights Reserved.: Kernel | 5

1.2 Socket Usage

freebind boolean() yes yes none
hdrincl boolean() yes yes type = raw
minttl integer() yes yes type = raw
msfilter null |ip_msfilter() yes no none
mtu integer() no yes type = raw
mtu_discover ip_pmtudisc() yes yes none
multicast_all boolean() yes yes none
multicast_if any |ip4_address() |yes yes none
multicast_loop boolean() yes yes none
multicast_ttl uint8() yes yes none
nodefrag boolean() yes yes type = raw
pktinfo boolean() yes yes type = dgram
recvdstaddr boolean() yes yes type = dgram
recverr boolean() yes yes none
recvif boolean() yes yes type = dgram | raw
recvopts boolean() yes yes type =/= stream
recvorigdstaddr boolean() yes yes none
recvttl boolean() yes yes type =/= stream
retopts boolean() yes yes type =/= stream
router_alert integer() yes yes type = raw
sendsrcaddr boolean() yes yes none
some high-priority
tos ip_tos() yes yes levels may require
superuser capability
transparent boolean() yes yes requi res admin
capability
ttl integer() yes yes none

6 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

unblock source

ip_mreq_source()

yes

no

none

Table 2.4: ip options

Optionsfor level i pv6:

Option Name

Value Type

Get

Other
Requirements and
comments

addrform

inet

yes

no

allowed only for
IPv6 sockets that are
connected and bound
to av4-mapped-on-
v6 address

add_membership

ipv6_mreq()

yes

no

none

authhdr

boolean()

yes

yes

type = dgram | raw,
obsolete?

drop_membership

ipv6_mreq()

yes

no

none

dstopts

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

flowinfo

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

hoplimit

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. FreeBSD) is
used to set in order
togethoplimt
as a control message
heeader. On others
(e.g. Linux),
recvhoplimt
isset in order to get
hoplimt.

hopopts

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

mtu

boolean()

yes

yes

Get: Only after the
socket has been
connected

Ericsson AB. All Rights Reserved.: Kernel | 7

1.2 Socket Usage

mtu_discover

ipv6_pmtudisc()

yes

yes

none

multicast_hops

default | uints()

yes

yes

none

multicast_if

integer()

yes

yes

type = dgram | raw

multicast_loop

boolean()

yes

yes

none

recverr

boolean()

yes

yes

none

recvhoplimit

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. Linux),
recvhoplimt
isset in order to get
hopl i mt

recvpktinfo | pktinfo

boolean()

yes

yes

type = dgram | raw.
On some platforms
(e.g. FreeBSD) is
used to set in order
toget hopl i mit
as a control message
heeader. On others
(e.g. Linux),
recvhoplimnt
isset in order to get
hoplimt.

recvtclass

boolean()

yes

yes

type = dgram | raw.
On some platforms
isused to set (=true)
in order to get the

t cl ass control
message heeader.
On others, t cl ass
isset in order to get
t cl ass control
message heeader.

router_alert

integer()

yes

yes

type = raw

rthdr

boolean()

yes

yes

type = dgram | raw,
requires superuser
privileges to update

tclass

integer()

yes

yes

Set the traffic class
associated with
outgoing packets.
RFC3542.

unicast_hops

default | uint8()

yes

yes

none

8 | Ericsson AB. All Rights Reserved.: Kernel

1.2 Socket Usage

veonly boolean() yes no none
Table 2.5: ipv6 options
Optionsfor level t cp:
Other
Option Name Value Type Set Get Requirements and
comments
congestion string() yes yes none
max integer() s s Set not allowed on
9 9 y y all platforms.
nodelay boolean() yes yes none
Table 2.6: tcp options
Optionsfor level udp:
Other
Option Name Value Type Set Get Requirements and
comments
cork boolean() yes yes none
Table 2.7: udp options
Optionsfor level sct p:
Other
Option Name Value Type Set Get Requirements and
comments
associnfo sctp_assocparams() | yes yes none
autoclose non_neg_integer() yes yes none
disable fragments boolean() yes yes none
events sctp_event_subscribe() yes no none
initmsg sctp_initmsg() yes yes none
maxseg non_neg_integer() yes yes none
nodelay boolean() yes yes none

Ericsson AB. All Rights Reserved.: Kernel | 9

1.3 Logging

rtoinfo sctp_rtoinfo() yes yes none

Table 2.8: sctp options

1.3 Logging

Erlang/OTP 21.0 providesastandard API for logging through Logger , whichispart of the Kernel application. Logger
consists of the API for issuing log events, and a customizable backend where log handlers, filters and formatters can
be plugged in.

By default, the Kernel applicationinstallsonelog handler at system start. Thishandlerisnamed def aul t . It receives

and processes standard |og events produced by the Erlang runtime system, standard behaviours and different Erlang/
OTP applications. The log events are by default written to the terminal.

You can also configure the system so that the default handler prints log events to a single file, or to a set of wrap
logsviadi sk_I og.

By configuration, you can also modify or disable the default handler, replace it by a custom handler, and install
additional handlers.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce changes to the Logger APl and
functionality in patches following this release. These changes might or might not be backwards compatible with
theinitial version.

1.3.1 Overview
A log event consists of alog level, the message to be logged, and metadata.

The Logger backend forwards log events from the AP, first through a set of primary filters, then through a set of
secondary filters attached to each log handler. The secondary filters are in the following named handler filters.

Each filter set consists of alog level check, followed by zero or more filter functions.

The following figure shows a conceptual overview of Logger. The figure shows two log handlers, but any number
of handlers can beinstalled.

10 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

]
N

Module Level

ar —
Global Level ~. -

b r h ‘
[) o Config
Global Filters A N
N
, s .
Handler v Handler L/
Level Level
Handler Handler
Filters Filters
- g N 4 e Log event flow
- = p Update configuration
Handler Handler
Callback Callback — - — p Look up configuration

Figure 3.1: Conceptual Overview

Log levelsare expressed as atoms. Internally in Logger, the atoms are mapped to integer values, and alog event passes
the log level check if the integer value of itslog level isless than or equal to the currently configured log level. That
is, the check passesif the event is equally or more severe than the configured level. See section Log Level for alisting
and description of all log levels.

The primary log level can be overridden by alog level configured per module. Thisis to, for instance, allow more
verbose logging from a specific part of the system.

Filter functions can be used for more sophisticated filtering than the log level check provides. A filter function can
stop or pass alog event, based on any of the event's contents. It can also modify all parts of the log event. See section
Filters for more details.

If alog event passesthrough all primary filtersand all handler filtersfor aspecific handler, L ogger forwardsthe event to
thehandler callback. The handler formats and printsthe event to its destination. See section Handlersfor more details.

Ericsson AB. All Rights Reserved.: Kernel | 11

1.3 Logging

Everything up to and including the call to the handler callbacks is executed on the client process, that is, the process
where the log event was issued. It is up to the handler implementation if other processes are involved or not.

The handlers are called in sequence, and the order is not defined.

1.3.2 Logger API

The API for logging consists of a set of macros, and a set of functionson theform | ogger : Level / 1, 2, 3, which
aredl shortcutsfor | ogger : | og(Level , Argl[, Arg2[, Arg3]]).

The macros are defined inl ogger . hr | , which isincluded in amodule with the directive
-include lib("kernel/include/logger.hrl").

The difference between using the macros and the exported functions is that macros add location (originator)
information to the metadata, and performslazy evaluation by wrapping the logger call in acase statement, soitisonly
evaluated if the log level of the event passes the primary log level check.

Log Level

Thelog level indicatesthe severity of aevent. In accordance with the Syslog protocol, RFC 5424, eight log levels can
be specified. The following tablelists al possible log levels by name (atom), integer value, and description:

Leve I nteger Description

emergency 0 system is unusable

alert 1 action must be taken immediately
critical 2 critical conditions

error 3 error conditions

warning 4 warning conditions

notice 5 normal but significant conditions
info 6 informational messages

debug 7 debug-level messages

Table 3.1: Log Levels

Notice that theinteger valueis only used internally in Logger. In the API, you must always use the atom. To compare
the severity of two log levels, usel ogger : conpare_| evel s/ 2.

Log Message

The log message contains the information to be logged. The message can consist of a format string and arguments
(given as two separate parametersin the Logger API), a string or areport.

Example, format string and arguments:
logger:error("The file does not exist: ~ts",[Filenamel])

Example, string:

12 | Ericsson AB. All Rights Reserved.: Kernel

href

1.3 Logging

logger:notice("Something strange happened!")

A report, which is either amap or akey-value list, is the preferred way to log using Logger as it makes it possible for
different backendsto filter and format the log event asit needs to.

Example, report:
?LOG_ERROR(#{ user => joe, filename => Filename, reason => enoent })

Reports can be accompanied by a report callback specified in the log event's metadata. The report callback is a
convenience function that the formatter can use to convert the report to a format string and arguments, or directly
to a string. The formatter can also use its own conversion function, if no callback is provided, or if a customized
formatting is desired.

The report callback must be a fun with one or two arguments. If it takes one argument, this is the report itself, and
the fun returns aformat string and arguments:
fun((l ogger:report()) -> {io:format(),[term()1})

If it takes two arguments, the first is the report, and the second is a map containing extra data that allows direct
coversion to a string:

fun((l ogger:report(),l ogger:report_ch_config()) -> unicode: chardata())

The fun must obey the dept h and chars_| i m t parameters provided in the second argument, as the formatter
cannot do anything useful of these parameters with the returned string. The extra data also contains a field named
si ngl e_Il i ne, indicating if the printed log message may contain line breaks or not. This variant is used when the
formatting of the report depends on the size or single line parameters.

Example, report, and metadata with report callback:

logger:debug(#{got => connection request, id => Id, state => State},
#{report_cb => fun(R) -> {"~p",[R]} end})

The log message can also be provided through afun for lazy evaluation. The fun is only evaluated if the primary log
level check passes, and is therefore recommended if it is expensive to generate the message. The lazy fun must return
astring, areport, or atuple with format string and arguments.

Metadata

M etadata contains additional data associated with alog message. Logger inserts some metadata fields by default, and
the client can add custom metadata in three different ways:

Set primary metadata

Primary metadata applies is the base metadata given to al log events. At startup it can be set
using the kernel configuration parameter logger_metadata. At run-time it can be set and updated using
| ogger:set _primary_config/1landl ogger: update primary_confi g/ 1 respectively.

Set process metadata

Process metadata is set and updated with | ogger:set_process_netadata/1l and
| ogger : updat e_process_net adat a/ 1, respectively. This metadata applies to the process on which
these calls are made, and Logger adds the metadata to all log events issued on that process.

Add metadata to a specific log event

Metadata associated with one specific log event is given as the last parameter to the log macro or Logger API
function when the event isissued. For example:

Ericsson AB. All Rights Reserved.: Kernel | 13

1.3 Logging

?LOG_ERROR("Connection closed",#{context => server})

See the description of thel ogger : net adat a() typefor information about which default keys Logger inserts, and
how the different metadata maps are merged.

1.3.3 Filters

Filters can be primary, or attached to a specific handler. Logger calls the primary filters first, and if they all pass, it
calls the handler filters for each handler. Logger cals the handler callback only if all filters attached to the handler
in question also pass.

A filter is defined as:
{FilterFun, Extra}

whereFi | t er Fun isafunction of arity 2, and Ext r a isany term. When applying thefilter, Logger callsthefunction
with the log event as the first argument, and the value of Ext r a as the second argument. Seel ogger: filter()
for type definitions.

Thefilter function can return st op, i gnor e or the (possibly modified) log event.

If st op isreturned, the log event isimmediately discarded. If the filter is primary, no handler filters or callbacks are
caled. If itisahandler filter, the corresponding handler callback isnot called, but the log event is forwarded to filters
attached to the next handler, if any.

If the log event is returned, the next filter function is called with the returned value as the first argument. That is, if
afilter function modifies the log event, the next filter function receives the modified event. The value returned from
the last filter function is the value that the handler callback receives.

If the filter function returnsi gnor e, it means that it did not recognize the log event, and thus leaves to other filters
to decide the event's destiny.

The configuration optionfi | t er _def aul t specifies the behaviour if al filter functions returni gnor e, or if no
filtersexist.fi |l t er _def aul t isby default settol og, meaningthat if al existing filtersignore alog event, Logger
forwards the event to the handler callback. If fi | t er _def aul t issettost op, Logger discards such events.

Primary filters are added with logger:add primary filter/2 and removed with
| ogger:renmove_primary_filter/ 1. They can also be added at system start via the Kernel configuration
parameter | ogger .

Handler filters are added with | ogger:add_handler filter/3 and removed with
| ogger:renmove_handl er _filter/ 2. They canaso be specified directly in the configuration when adding a
handler with | ogger : add_handl er/ 3 or viathe Kernel configuration parameter | ogger .

To see which filters are currently installed in the system, use | ogger:get_config/0, or
| ogger:get _primary_config/ 0 and| ogger: get _handl er _confi g/ 1. Filters are listed in the order
they are applied, that is, thefirst filter in the list is applied first, and so on.

For convenience, the following built-in filters exist:
| ogger filters: domain/2
Provides away of filtering log events based on adonmai n fieldin Met adat a.
| ogger filters:level/2
Provides away of filtering log events based on the log level.
| ogger filters: progress/?2

Stops or alows progress reportsfrom super vi sor and appl i cati on_control |l er.

14 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

| ogger filters:renote_gl/2

Stops or alows log events originating from a process that has its group leader on a remote node.

1.3.4 Handlers

A handler is defined as a module exporting at least the following callback function:
log(LogEvent, Config) -> void()

This function is called when alog event has passed through all primary filters, and all handler filters attached to the
handler in question. The function call is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.

Logger allows adding multiple instances of a handler callback. That is, if a callback module implementation allows
it, you can add multiple handler instances using the same callback module. The different instances are identified by
unique handler identities.

In addition to the mandatory callback function | og/ 2, a handler module can export the optional callback
functionsaddi ng_handl er/ 1,changi ng_confi g/ 3,filter_config/1l,andrenovi ng_handl er/ 1.
See section Handler Callback Functions in the logger(3) manual page for more information about these function.

The following built-in handlers exist:
| ogger _std_h

Thisisthe default handler used by OTP. Multipleinstances can be started, and each instance will writelog events
to agiven destination, terminal or file.

| ogger _di sk_l og_h
This handler behaves much like | ogger st d_h, except it usesdi sk_| og asits destination.
error_| ogger

This handler is provided for backwards compatibility only. It is not started by default, but
will be automaticaly started the first time an error | ogger event handler is added with
error _| ogger:add report _handler/1, 2.

The old err or _| ogger event handlersin STDLIB and SASL still exist, but they are not added by Erlang/
OTP 21.0 or later.

1.3.5 Formatters

A formatter can be used by the handler implementation to do the final formatting of alog event, before printing to
the handler's destination. The handler callback receives the formatter information as part of the handler configuration,
which is passed as the second argument to HVbdul e: | og/ 2.

Theformatter information consist of aformatter module, FModul e and its configuration, FConf i g. FModul e must
export the following function, which can be called by the handler:

format(LogEvent,FConfig)
-> FormattedLogEntry

The formatter information for a handler is set as a part of its configuration when the handler is added.
It can also be changed during runtime with | ogger: set _handl er _confi g(Handl erl d, formatter,
{ FModul e, FConfi g}) , Wwhich overwrites the current formatter information, or with
| ogger: update_formatter_confi g/ 2, 3, which only modifies the formatter configuration.

If the formatter module exports the optional callback function check_confi g(FConfi g), Logger calls this
function when the formatter information is set or modified, to verify the validity of the formatter configuration.

Ericsson AB. All Rights Reserved.: Kernel | 15

1.3 Logging

If no formatter information is specified for a handler, Logger uses | ogger _formatter as default. See the
| ogger _formatter(3) manua page for moreinformation about this module.

1.3.6 Configuration

At system start, Logger is configured through Kernel configuration parameters. The parameters that apply to Logger
are described in section Kernel Configuration Parameters. Examples are found in section Configuration Examples.

During runtime, Logger configuration is changed via API functions. See section Configuration API Functionsin the
| ogger (3) manual page.

Primary Logger Configuration

Logger API functions that apply to the primary Logger configuration are:

e get_primary_config/0

e set _primary_config/l,2

e update_primary_config/1l

e add_primary_filter/2

e renove primary filter/1

The primary Logger configuration is a map with the following keys:
level = logger:level() | all | none

Specifiesthe primary log level, that is, log event that are equally or more severe than thislevel, are forwarded to
the primary filters. Less severe log events are immediately discarded.

See section Log Level for alisting and description of possible log levels.

Theinitial value of thisoptionisset by theKernel configuration parameter | ogger _| evel . Itischanged during
runtimewith | ogger: set _primary_config(l evel, Level).

Defaultstonot i ce.

filters = [{Filterld, Filter}]
Specifiesthe primary filters.
e Filterld = logger:filter_id()
e Filter = logger:filter()

The initial value of this option is set by the Kernel configuration parameter | ogger. During
runtime, primary filters are added and removed with | ogger:add primary filter/2 and
| ogger:renmove_primary filter/1,respectively.

See section Filters for more detailed information.
Defaultsto[] .
filter_default =1log | stop
Specifies what happensto alog event if al filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.
Defaultstol og.
net adata = net adat a()
The primary metadata to be used for all log calls.
See section Metadata for more information about how this option is used.
Defaultsto#{} .

16 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

Handler Configuration
Logger API functions that apply to handler configuration are:

« get_handler_config/0,1

e set_handler _config/2,3

e update_handl er _config/2,3

e add_handler filter/3

e renove_handler filter/2

e update formatter _config/2,3

The configuration for a handler is a map with the following keys:
id = logger:handler_id()

Automatically inserted by Logger. The value isthe same asthe Handl er | d specified when adding the handler,
and it cannot be changed.

nodul e = nodul e()

Automatically inserted by Logger. The value is the same asthe Modul e specified when adding the handler, and
it cannot be changed.

Il evel = logger:level() | all | none

Specifies the log level for the handler, that is, log events that are equally or more severe than this level, are
forwarded to the handler filters for this handler.

See section Log Level for alisting and description of possible log levels.

The log level is specified when adding the handler, or changed during runtime with, for instance,
| ogger: set _handl er _config(Handl erld, | evel, Level).

Defaultstoal | .
filters = [{Filterld, Filter}]
Specifiesthe handler filters.

e Filterld = logger:filter_id()
e Filter = logger:filter()

Handler filters are specified when adding the handler, or added or removed during runtime with
| ogger:add_handl er filter/3andl ogger:renmove_handl er filter/2,respectively.

See Filters for more detailed information.
Defaultsto[] .
filter_default =1log | stop
Specifies what happensto alog event if all filtersreturni gnor e, or if no filters exist.
See section Filters for more information about how this option is used.
Defaultstol og.
formatter = {FormatterMdul e, Formatter Confi g}
Specifies aformatter that the handler can use for converting the log event term to a printable string.

e FormatterMdul e = nodul e()
« FormatterConfig = | ogger:fornmatter_ config()

Ericsson AB. All Rights Reserved.: Kernel | 17

1.3 Logging

The formatter information is specified when adding the handler. The formatter configuration can be changed
during runtime with | ogger : updat e_formatter _confi g/ 2, 3, or the complete formatter information
can be overwritten with, for instance, | ogger : set _handl er _confi g/ 3.

See section Formatters for more detailed information.

Defaultsto {| ogger _formatter, Def aul t Formatt er Confi g}. Seethel ogger _fornmatter (3)
manual page for information about this formatter and its default configuration.

config = tern()
Handler specific configuration, that is, configuration data related to a specific handler implementation.

The configuration for the built-in handlers is described in the | ogger _std h(3) and
| ogger _di sk_| og_h(3) manual pages.

Noticethat| evel andfilt er s areobeyed by Logger itself before forwarding the log eventsto each handler, while
format t er and al handler specific options are left to the handler implementation.

Kernel Configuration Parameters
The following Kernel configuration parameters apply to Logger:
| ogger = [Config]

Specifies the configuration for Logger, except the primary log level, which is specified with | ogger _| evel ,
and the compatibility with SASL Error Logging, which is specified with | ogger _sasl _conpati bl e.

With this parameter, you can modify or disable the default handler, add custom handlers and primary logger
filters, set log levels per module, and modify the proxy configuration.

Conf i g isany (zero or more) of the following:

{handl er, default, undefined}
Disables the default handler. This allows another application to add its own default handler.
Only one entry of thistypeisallowed.

{handl er, Handl erld, Mdule, Handl erConfi g}
If Handl er | d isdef aul t , then this entry modifies the default handler, equivalent to calling

logger:remove handler(default)

followed by
logger:add handler(default, Module, HandlerConfig)

For al other values of Handl er | d, this entry adds a new handler, equivalent to calling
logger:add handler(HandlerId, Module, HandlerConfig)

Multiple entries of thistype are allowed.
{filters, FilterDefault, [Filter]}

Adds the specified primary filters.

e FilterDefault = log | stop

18 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

 Filter = {Filterld, {FilterFun, FilterConfig}}
Equivalent to calling

logger:add primary filter(FilterId, {FilterFun, FilterConfig})

foreachFil ter.
Fi | t er Def aul t specifiesthe behaviour if al primary filtersreturni gnor e, see section Filters.
Only one entry of thistype isallowed.
{modul e_| evel, Level, [Mbdule]}
Sets module log leve for the given modules. Equivalent to calling

logger:set module level(Module, Level)

for each Modul e.

Multiple entries of thistype are allowed.
{proxy, ProxyConfi g}

Sets the proxy configuration, equivalent to calling

logger:set proxy config(ProxyConfig)

Only one entry of thistypeisallowed.
See section Configuration Examples for examples using thel ogger parameter for system configuration.
| ogger _netadata = nap()
Specifies the primary metadata. See theker nel (6) manual page for more information about this parameter.
| ogger | evel = Level
Specifiesthe primary log level. Seethe ker nel (6) manual page for more information about this parameter.
| ogger _sasl _conpatible = true | false
Specifies Logger's compatibility with SASL Error Logging. See the ker nel (6) manua page for more
information about this parameter.
Configuration Examples

The value of the Kernel configuration parameter | ogger isalist of tuples. It is possible to write the term on the
command line when starting an erlang node, but asthe term grows, a better approach isto use the system configuration
file. Seetheconfi g(4) manua page for moreinformation about thisfile.

Each of the following examples shows a simple system configuration file that configures Logger according to the
description.

Modify the default handler to print to afileinstead of st andar d_i o:

[{kernel,
[{logger,
[{handler, default, logger std h, % {handler, HandlerId, Module,
#{config => #{file => "log/erlang.log"}}} % Config}
13131

Ericsson AB. All Rights Reserved.: Kernel | 19

1.3 Logging

Modify the default handler to print each log event asasingle line:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter, #{single line => true}}}}
13131

Modify the default handler to print the pid of the logging process for each log event:

[{kernel,
[{logger,
[{handler, default, logger std h,
#{formatter => {logger formatter,
#{template => [time," ",pid," ",msg,"\n"1}}}}
13131,

Modify the default handler to only print errors and more severe log eventsto "log/erlang.log", and add another handler
to print all log eventsto "log/debug.log”.

[{kernel,
[{logger,
[{handler, default, logger std h,
#{level => error,
config => #{file => "log/erlang.log"}}},
{handler, info, logger std h,
#{level => debug,
config => #{file => "log/debug.log"}}}
131} 1.

1.3.7 Backwards Compatibility with error_logger
Logger provides backwards compatibility with er r or _I ogger inthefollowing ways:
API for Logging
Theerror _| ogger API till exists, but should only be used by legacy code. It will beremovedin alater release.

Callstoerror_logger:error_report/1,2,error_|l ogger:error_nsg/ 1, 2, and corresponding
functions for warning and info messages, are al forwarded to Logger as «cdls to
| ogger: | og(Level, Report, Met adat a) .

Level = error | warning | infoandistakenfrom thefunctionname. Report containstheactual log
message, and Met adat a contains additional information which can be used for creating backwards compatible
eventsfor legacy er r or _| ogger event handlers, see section Legacy Event Handlers.

Output Format

Togetlog eventsonthesameformat asproducedbyerror _| ogger _tty_handerror _| ogger _file_h,
usethedefault formatter, | ogger _f or mat t er , with configuration parameter | egacy_header settot r ue.
Thisisthe default configuration of thedef aul t handler started by Kernel.

Default Format of Log Events from OTP

By default, al log events originating from within OTP, except the former so called "SASL reports', look the
same as before.

SASL Reports
By SASL reports we mean supervisor reports, crash reports and progress reports.

Prior to Erlang/OTP 21.0, these reports were only logged when the SASL application was running, and they were
printed trough SASL's own event handlerssasl _report_tty handsasl _report_file_h.

20 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

The destination of these log events was configured by SASL configuration parameters.
Due to the specific event handlers, the output format slightly differed from other log events.
Asof Erlang/OTP 21.0, the concept of SASL reportsisremoved, meaning that the default behaviour isasfollows:

e Supervisor reports, crash reports, and progress reports are no longer connected to the SASL application.

e Supervisor reports and crash reports areissued aser r or level log events, and are logged through the
default handler started by Kernel.

« Progressreportsareissued asi nf o level log events, and since the default primary log level isnot i ce,
these are not logged by default. To enable printing of progress reports, set the primary log level toi nf o.

e Theoutput format is the samefor all log events.

If the old behaviour is preferred, the Kernel configuration parameter | ogger _sasl _conpat i bl e can be set
totrue. The SASL configuration parameters can then be used as before, and the SASL reports will only be
printed if the SASL application is running, through a second log handler named sasl .

All SASL reports have ametadatafield domai n whichissetto[ot p, sasl] . Thisfield can be used by filters
to stop or alow the log events.

See section SASL User's Guide for more information about the old SASL error logging functionality.
Legacy Event Handlers
To use event handlers written for er r or _| ogger , just add your event handler with

error_logger:add report handler/1,2.

Thisautomatically startsthe error logger event manager, and addser r or _| ogger asahandler to Logger, with
the following configuration:

#{level => info,
filter default => log,
filters => []}.

This handler ignores events that do not originate from the er r or _| ogger API, or from within OTP. This
meansthat if your code usesthe Logger API for logging, then your log eventswill be discarded by thishandler.

The handler is not overload protected.

1.3.8 Error Handling

Logger does, to a certain extent, check its input data before forwarding a log event to filters and handlers. It does,
however, not evaluate report callbacks, or check the validity of format strings and arguments. This means that all
filters and handlers must be careful when formatting the data of alog event, making sure that it does not crash due
to bad input data or faulty callbacks.

If afilter or handler still crashes, Logger will remove thefilter or handler in question from the configuration, and print
ashort error message to the terminal. A debug event containing the crash reason and other detailsis also issued.

See section Log Message for more information about report callbacks and valid forms of log messages.

1.3.9 Example: Add a handler to log info events to file

When starting an Erlang node, the default behaviour isthat all log eventsonlevel not i ce or more severe, arelogged
to the terminal viathe default handler. To also log info events, you can either change the primary log level toi nf o:

Ericsson AB. All Rights Reserved.: Kernel | 21

1.3 Logging

1> logger:set primary config(level, info).
ok

or set the level for one or afew modules only:

2> logger:set module level(mymodule, info).
ok

Thisallowsinfo events to pass through to the default handler, and be printed to the terminal aswell. If there are many
info events, it can be useful to print these to afile instead.

First, set the log level of the default handler to not i ce, preventing it from printing info events to the terminal:

3> logger:set handler config(default, level, notice).
ok

Then, add a new handler which prints to file. You can use the handler module | ogger _st d_h, and configure it
tologtofile:

4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"}, level => info}

5> logger:add handler(myhandler, logger std h, Config).

ok

Sincefi | t er _def aul t defaultstol og, thishandler now receivesall log events. If you want info eventsonly inthe
file, you must add afilter to stop all non-info events. The built-infilter | ogger _filters: | evel / 2 candothis:

6> logger:add handler filter(myhandler, stop non info,
{fun logger filters:level/2, {stop, neq, info}}).
ok

See section Filters for more information about thefiltersand thef i | t er _def aul t configuration parameter.

1.3.10 Example: Implement a handler

Section Handler Callback Functions in the logger(3) manua page describes the callback functions that can be
implemented for a Logger handler.

A handler callback module must export:

* log(Log, Config)

It can optionally also export some, or all, of the following:

e addi ng_handl er (Confi g)

e renovi ng_handl er (Confi Q)

« changi ng_config(Set OrUpdate, O dConfig, NewConfiQ)
« filter_config(Config)

When a handler is added, by for example a call to | ogger: add_handl er (1d, Hwbdule, Config),
Logger first calls HVbdul e: addi ng_handl er (Confi g) . If this function returns { ok, Confi g1}, Logger
writes Conf i g1 to the configuration database, and the | ogger : add_handl er/ 3 call returns. After this, the
handler isinstalled and must be ready to receive log events as callsto HVbdul e: | og/ 2.

22 | Ericsson AB. All Rights Reserved.: Kernel

1.3 Logging

A handler can be removed by caling |ogger:renove_handler(ld). Logger cals
HModul e: renovi ng_handl er (Confi g), and removes the handler's configuration from the configuration
database.

When | ogger: set _handl er _config/ 2,3 or | ogger:update_handl er_config/2,3 is caled,
Logger calls HVvbdul e: changi ng_confi g(Set Or Update, O dConfi g, NewConfi g) . If thisfunction
returns { ok, NewConf i g1}, Logger writes NewConf i g1 to the configuration database.

When | ogger:get_config/0 or |ogger:get_handl er_config/0,1 is caled, Logger cals
Hvodul e: filter_confi g(Confi g) . Thisfunction must return the handler configuration where internal data
isremoved.

A simple handler that printsto the terminal can be implemented as follows:

-module(myhandlerl).
-export([log/2]).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
io:put chars(FModule:format(LogEvent, FConfig)).

Notice that the above handler does not have any overload protection, and all log events are printed directly from the
client process.

For information and examples of overload protection, please refer to section Protecting the Handler from Overload,
and the implementation of | ogger _std_h and| ogger _di sk | og_h.

Thefollowing is asimpler example of a handler which logs to afile through one single process:

-module(myhandler2).
-export([adding handler/1, removing handler/1, log/2]).
-export([init/1, handle call/3, handle cast/2, terminate/2]).

adding handler(Config) ->
MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
{ok, Pid} = gen server:start(?MODULE, MyConfig, []),
{ok, Config#{config => MyConfig#{pid => Pid}}}.

removing handler(#{config := #{pid := Pid}}) ->
gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
gen_server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
{ok, Fd} = file:open(File, [append, {encoding, utf8}1),
{ok, #{file => File, fd => Fd}}.

handle call(, , State) ->
{reply, {error, bad request}, State}.

handle cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
do log(Fd, LogEvent, Config),
{noreply, State}.

terminate(Reason, #{fd := Fd}) ->
= file:close(Fd),
ok.

do log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->

String = FModule:format(LogEvent, FConfig),
io:put chars(Fd, String).

Ericsson AB. All Rights Reserved.: Kernel | 23

1.3 Logging

1.3.11 Protecting the Handler from Overload

The default handlers, | ogger _std_h and | ogger _di sk_| og_h, feature an overload protection mechanism,
which makes it possible for the handlers to survive, and stay responsive, during periods of high load (when huge
numbers of incoming log requests must be handled). The mechanism works as follows:

Message Queue Length

The handler process keeps track of the length of its message queue and takes some form of action when the current
length exceeds a configurable threshold. The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events. The memory use of the handler
must never grow larger and larger, since that will eventually cause the handler to crash. These three thresholds, with
associated actions, exist:

sync_node_gl en

Aslong as the length of the message queue is lower than this value, all log events are handled asynchronously.
Thismeansthat the client process sending thelog event, by calling alog functionin the Logger API, does not wait
for aresponse from the handler but continues executing immediately after the event is sent. It is not affected by
thetimeit takes the handler to print the event to the log device. If the message queue grows larger than thisvalue,
the handler starts handling log events synchronously instead, meaning that the client process sending the event
must wait for aresponse. When the handler reduces the message queue to alevel below thesync_node_ gl en
threshold, asynchronous operation is resumed. The switch from asynchronous to synchronous mode can slow
down the logging tempo of one, or afew, busy senders, but cannot protect the handler sufficiently in a situation
of many busy concurrent senders.

Defaultsto 10 messages.
drop_node_qgl en

When the message queue grows larger than this threshold, the handler switches t