LLVM OpenMP* Runtime Library
kmp.h
1 
2 /*
3  * kmp.h -- KPTS runtime header file.
4  */
5 
6 //===----------------------------------------------------------------------===//
7 //
8 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9 // See https://llvm.org/LICENSE.txt for license information.
10 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef KMP_H
15 #define KMP_H
16 
17 #include "kmp_config.h"
18 
19 /* #define BUILD_PARALLEL_ORDERED 1 */
20 
21 /* This fix replaces gettimeofday with clock_gettime for better scalability on
22  the Altix. Requires user code to be linked with -lrt. */
23 //#define FIX_SGI_CLOCK
24 
25 /* Defines for OpenMP 3.0 tasking and auto scheduling */
26 
27 #ifndef KMP_STATIC_STEAL_ENABLED
28 #define KMP_STATIC_STEAL_ENABLED 1
29 #endif
30 
31 #define TASK_CURRENT_NOT_QUEUED 0
32 #define TASK_CURRENT_QUEUED 1
33 
34 #ifdef BUILD_TIED_TASK_STACK
35 #define TASK_STACK_EMPTY 0 // entries when the stack is empty
36 #define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37 // Number of entries in each task stack array
38 #define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39 // Mask for determining index into stack block
40 #define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41 #endif // BUILD_TIED_TASK_STACK
42 
43 #define TASK_NOT_PUSHED 1
44 #define TASK_SUCCESSFULLY_PUSHED 0
45 #define TASK_TIED 1
46 #define TASK_UNTIED 0
47 #define TASK_EXPLICIT 1
48 #define TASK_IMPLICIT 0
49 #define TASK_PROXY 1
50 #define TASK_FULL 0
51 #define TASK_DETACHABLE 1
52 #define TASK_UNDETACHABLE 0
53 
54 #define KMP_CANCEL_THREADS
55 #define KMP_THREAD_ATTR
56 
57 // Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58 // built on Android
59 #if defined(__ANDROID__)
60 #undef KMP_CANCEL_THREADS
61 #endif
62 
63 #include <signal.h>
64 #include <stdarg.h>
65 #include <stddef.h>
66 #include <stdio.h>
67 #include <stdlib.h>
68 #include <string.h>
69 #include <limits>
70 #include <type_traits>
71 /* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72  Microsoft library. Some macros provided below to replace these functions */
73 #ifndef __ABSOFT_WIN
74 #include <sys/types.h>
75 #endif
76 #include <limits.h>
77 #include <time.h>
78 
79 #include <errno.h>
80 
81 #include "kmp_os.h"
82 
83 #include "kmp_safe_c_api.h"
84 
85 #if KMP_STATS_ENABLED
86 class kmp_stats_list;
87 #endif
88 
89 #if KMP_USE_HIER_SCHED
90 // Only include hierarchical scheduling if affinity is supported
91 #undef KMP_USE_HIER_SCHED
92 #define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93 #endif
94 
95 #if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96 #include "hwloc.h"
97 #ifndef HWLOC_OBJ_NUMANODE
98 #define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99 #endif
100 #ifndef HWLOC_OBJ_PACKAGE
101 #define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102 #endif
103 #if HWLOC_API_VERSION >= 0x00020000
104 // hwloc 2.0 changed type of depth of object from unsigned to int
105 typedef int kmp_hwloc_depth_t;
106 #else
107 typedef unsigned int kmp_hwloc_depth_t;
108 #endif
109 #endif
110 
111 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
112 #include <xmmintrin.h>
113 #endif
114 
115 #include "kmp_debug.h"
116 #include "kmp_lock.h"
117 #include "kmp_version.h"
118 #if USE_DEBUGGER
119 #include "kmp_debugger.h"
120 #endif
121 #include "kmp_i18n.h"
122 
123 #define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
124 
125 #include "kmp_wrapper_malloc.h"
126 #if KMP_OS_UNIX
127 #include <unistd.h>
128 #if !defined NSIG && defined _NSIG
129 #define NSIG _NSIG
130 #endif
131 #endif
132 
133 #if KMP_OS_LINUX
134 #pragma weak clock_gettime
135 #endif
136 
137 #if OMPT_SUPPORT
138 #include "ompt-internal.h"
139 #endif
140 
141 #ifndef UNLIKELY
142 #define UNLIKELY(x) (x)
143 #endif
144 
145 // Affinity format function
146 #include "kmp_str.h"
147 
148 // 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
149 // 3 - fast allocation using sync, non-sync free lists of any size, non-self
150 // free lists of limited size.
151 #ifndef USE_FAST_MEMORY
152 #define USE_FAST_MEMORY 3
153 #endif
154 
155 #ifndef KMP_NESTED_HOT_TEAMS
156 #define KMP_NESTED_HOT_TEAMS 0
157 #define USE_NESTED_HOT_ARG(x)
158 #else
159 #if KMP_NESTED_HOT_TEAMS
160 #define USE_NESTED_HOT_ARG(x) , x
161 #else
162 #define USE_NESTED_HOT_ARG(x)
163 #endif
164 #endif
165 
166 // Assume using BGET compare_exchange instruction instead of lock by default.
167 #ifndef USE_CMP_XCHG_FOR_BGET
168 #define USE_CMP_XCHG_FOR_BGET 1
169 #endif
170 
171 // Test to see if queuing lock is better than bootstrap lock for bget
172 // #ifndef USE_QUEUING_LOCK_FOR_BGET
173 // #define USE_QUEUING_LOCK_FOR_BGET
174 // #endif
175 
176 #define KMP_NSEC_PER_SEC 1000000000L
177 #define KMP_USEC_PER_SEC 1000000L
178 
187 enum {
192  /* 0x04 is no longer used */
201  KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
202  KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
203  KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
204 
205  KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
206  KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
207 
219  KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
220  KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
221  KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
222  KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
223  KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
224 };
225 
229 typedef struct ident {
230  kmp_int32 reserved_1;
231  kmp_int32 flags;
233  kmp_int32 reserved_2;
234 #if USE_ITT_BUILD
235 /* but currently used for storing region-specific ITT */
236 /* contextual information. */
237 #endif /* USE_ITT_BUILD */
238  kmp_int32 reserved_3;
239  char const *psource;
243  // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
244  kmp_int32 get_openmp_version() {
245  return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
246  }
252 // Some forward declarations.
253 typedef union kmp_team kmp_team_t;
254 typedef struct kmp_taskdata kmp_taskdata_t;
255 typedef union kmp_task_team kmp_task_team_t;
256 typedef union kmp_team kmp_team_p;
257 typedef union kmp_info kmp_info_p;
258 typedef union kmp_root kmp_root_p;
259 
260 template <bool C = false, bool S = true> class kmp_flag_32;
261 template <bool C = false, bool S = true> class kmp_flag_64;
262 class kmp_flag_oncore;
263 
264 #ifdef __cplusplus
265 extern "C" {
266 #endif
267 
268 /* ------------------------------------------------------------------------ */
269 
270 /* Pack two 32-bit signed integers into a 64-bit signed integer */
271 /* ToDo: Fix word ordering for big-endian machines. */
272 #define KMP_PACK_64(HIGH_32, LOW_32) \
273  ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
274 
275 // Generic string manipulation macros. Assume that _x is of type char *
276 #define SKIP_WS(_x) \
277  { \
278  while (*(_x) == ' ' || *(_x) == '\t') \
279  (_x)++; \
280  }
281 #define SKIP_DIGITS(_x) \
282  { \
283  while (*(_x) >= '0' && *(_x) <= '9') \
284  (_x)++; \
285  }
286 #define SKIP_TOKEN(_x) \
287  { \
288  while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
289  (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
290  (_x)++; \
291  }
292 #define SKIP_TO(_x, _c) \
293  { \
294  while (*(_x) != '\0' && *(_x) != (_c)) \
295  (_x)++; \
296  }
297 
298 /* ------------------------------------------------------------------------ */
299 
300 #define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
301 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
302 
303 /* ------------------------------------------------------------------------ */
304 /* Enumeration types */
305 
306 enum kmp_state_timer {
307  ts_stop,
308  ts_start,
309  ts_pause,
310 
311  ts_last_state
312 };
313 
314 enum dynamic_mode {
315  dynamic_default,
316 #ifdef USE_LOAD_BALANCE
317  dynamic_load_balance,
318 #endif /* USE_LOAD_BALANCE */
319  dynamic_random,
320  dynamic_thread_limit,
321  dynamic_max
322 };
323 
324 /* external schedule constants, duplicate enum omp_sched in omp.h in order to
325  * not include it here */
326 #ifndef KMP_SCHED_TYPE_DEFINED
327 #define KMP_SCHED_TYPE_DEFINED
328 typedef enum kmp_sched {
329  kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
330  // Note: need to adjust __kmp_sch_map global array in case enum is changed
331  kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
332  kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
333  kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
334  kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
335  kmp_sched_upper_std = 5, // upper bound for standard schedules
336  kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
337  kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
338 #if KMP_STATIC_STEAL_ENABLED
339  kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
340 #endif
341  kmp_sched_upper,
342  kmp_sched_default = kmp_sched_static, // default scheduling
343  kmp_sched_monotonic = 0x80000000
344 } kmp_sched_t;
345 #endif
346 
351 enum sched_type : kmp_int32 {
353  kmp_sch_static_chunked = 33,
355  kmp_sch_dynamic_chunked = 35,
357  kmp_sch_runtime = 37,
359  kmp_sch_trapezoidal = 39,
360 
361  /* accessible only through KMP_SCHEDULE environment variable */
362  kmp_sch_static_greedy = 40,
363  kmp_sch_static_balanced = 41,
364  /* accessible only through KMP_SCHEDULE environment variable */
365  kmp_sch_guided_iterative_chunked = 42,
366  kmp_sch_guided_analytical_chunked = 43,
367  /* accessible only through KMP_SCHEDULE environment variable */
368  kmp_sch_static_steal = 44,
369 
370  /* static with chunk adjustment (e.g., simd) */
371  kmp_sch_static_balanced_chunked = 45,
375  /* accessible only through KMP_SCHEDULE environment variable */
379  kmp_ord_static_chunked = 65,
381  kmp_ord_dynamic_chunked = 67,
382  kmp_ord_guided_chunked = 68,
383  kmp_ord_runtime = 69,
385  kmp_ord_trapezoidal = 71,
388  /* Schedules for Distribute construct */
392  /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
393  single iteration/chunk, even if the loop is serialized. For the schedule
394  types listed above, the entire iteration vector is returned if the loop is
395  serialized. This doesn't work for gcc/gcomp sections. */
396  kmp_nm_lower = 160,
398  kmp_nm_static_chunked =
399  (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
401  kmp_nm_dynamic_chunked = 163,
403  kmp_nm_runtime = 165,
404  kmp_nm_auto = 166,
405  kmp_nm_trapezoidal = 167,
406 
407  /* accessible only through KMP_SCHEDULE environment variable */
408  kmp_nm_static_greedy = 168,
409  kmp_nm_static_balanced = 169,
410  /* accessible only through KMP_SCHEDULE environment variable */
411  kmp_nm_guided_iterative_chunked = 170,
412  kmp_nm_guided_analytical_chunked = 171,
413  kmp_nm_static_steal =
414  172, /* accessible only through OMP_SCHEDULE environment variable */
415 
416  kmp_nm_ord_static_chunked = 193,
418  kmp_nm_ord_dynamic_chunked = 195,
419  kmp_nm_ord_guided_chunked = 196,
420  kmp_nm_ord_runtime = 197,
422  kmp_nm_ord_trapezoidal = 199,
425  /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
426  we need to distinguish the three possible cases (no modifier, monotonic
427  modifier, nonmonotonic modifier), we need separate bits for each modifier.
428  The absence of monotonic does not imply nonmonotonic, especially since 4.5
429  says that the behaviour of the "no modifier" case is implementation defined
430  in 4.5, but will become "nonmonotonic" in 5.0.
431 
432  Since we're passing a full 32 bit value, we can use a couple of high bits
433  for these flags; out of paranoia we avoid the sign bit.
434 
435  These modifiers can be or-ed into non-static schedules by the compiler to
436  pass the additional information. They will be stripped early in the
437  processing in __kmp_dispatch_init when setting up schedules, so most of the
438  code won't ever see schedules with these bits set. */
440  (1 << 29),
442  (1 << 30),
444 #define SCHEDULE_WITHOUT_MODIFIERS(s) \
445  (enum sched_type)( \
447 #define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
448 #define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
449 #define SCHEDULE_HAS_NO_MODIFIERS(s) \
450  (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
451 #define SCHEDULE_GET_MODIFIERS(s) \
452  ((enum sched_type)( \
453  (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
454 #define SCHEDULE_SET_MODIFIERS(s, m) \
455  (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
456 #define SCHEDULE_NONMONOTONIC 0
457 #define SCHEDULE_MONOTONIC 1
458 
460 };
461 
462 // Apply modifiers on internal kind to standard kind
463 static inline void
464 __kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
465  enum sched_type internal_kind) {
466  if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
467  *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
468  }
469 }
470 
471 // Apply modifiers on standard kind to internal kind
472 static inline void
473 __kmp_sched_apply_mods_intkind(kmp_sched_t kind,
474  enum sched_type *internal_kind) {
475  if ((int)kind & (int)kmp_sched_monotonic) {
476  *internal_kind = (enum sched_type)((int)*internal_kind |
478  }
479 }
480 
481 // Get standard schedule without modifiers
482 static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
483  return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
484 }
485 
486 /* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
487 typedef union kmp_r_sched {
488  struct {
489  enum sched_type r_sched_type;
490  int chunk;
491  };
492  kmp_int64 sched;
493 } kmp_r_sched_t;
494 
495 extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
496 // internal schedule types
497 
498 enum library_type {
499  library_none,
500  library_serial,
501  library_turnaround,
502  library_throughput
503 };
504 
505 #if KMP_OS_LINUX
506 enum clock_function_type {
507  clock_function_gettimeofday,
508  clock_function_clock_gettime
509 };
510 #endif /* KMP_OS_LINUX */
511 
512 #if KMP_MIC_SUPPORTED
513 enum mic_type { non_mic, mic1, mic2, mic3, dummy };
514 #endif
515 
516 /* -- fast reduction stuff ------------------------------------------------ */
517 
518 #undef KMP_FAST_REDUCTION_BARRIER
519 #define KMP_FAST_REDUCTION_BARRIER 1
520 
521 #undef KMP_FAST_REDUCTION_CORE_DUO
522 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
523 #define KMP_FAST_REDUCTION_CORE_DUO 1
524 #endif
525 
526 enum _reduction_method {
527  reduction_method_not_defined = 0,
528  critical_reduce_block = (1 << 8),
529  atomic_reduce_block = (2 << 8),
530  tree_reduce_block = (3 << 8),
531  empty_reduce_block = (4 << 8)
532 };
533 
534 // Description of the packed_reduction_method variable:
535 // The packed_reduction_method variable consists of two enum types variables
536 // that are packed together into 0-th byte and 1-st byte:
537 // 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
538 // barrier that will be used in fast reduction: bs_plain_barrier or
539 // bs_reduction_barrier
540 // 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
541 // be used in fast reduction;
542 // Reduction method is of 'enum _reduction_method' type and it's defined the way
543 // so that the bits of 0-th byte are empty, so no need to execute a shift
544 // instruction while packing/unpacking
545 
546 #if KMP_FAST_REDUCTION_BARRIER
547 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
548  ((reduction_method) | (barrier_type))
549 
550 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
551  ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
552 
553 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
554  ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
555 #else
556 #define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
557  (reduction_method)
558 
559 #define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
560  (packed_reduction_method)
561 
562 #define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
563 #endif
564 
565 #define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
566  ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
567  (which_reduction_block))
568 
569 #if KMP_FAST_REDUCTION_BARRIER
570 #define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
571  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
572 
573 #define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
574  (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
575 #endif
576 
577 typedef int PACKED_REDUCTION_METHOD_T;
578 
579 /* -- end of fast reduction stuff ----------------------------------------- */
580 
581 #if KMP_OS_WINDOWS
582 #define USE_CBLKDATA
583 #if KMP_MSVC_COMPAT
584 #pragma warning(push)
585 #pragma warning(disable : 271 310)
586 #endif
587 #include <windows.h>
588 #if KMP_MSVC_COMPAT
589 #pragma warning(pop)
590 #endif
591 #endif
592 
593 #if KMP_OS_UNIX
594 #include <dlfcn.h>
595 #include <pthread.h>
596 #endif
597 
598 enum kmp_hw_t : int {
599  KMP_HW_UNKNOWN = -1,
600  KMP_HW_MACHINE = 0,
601  KMP_HW_SOCKET,
602  KMP_HW_PROC_GROUP,
603  KMP_HW_NUMA,
604  KMP_HW_DIE,
605  KMP_HW_L3,
606  KMP_HW_TILE,
607  KMP_HW_MODULE,
608  KMP_HW_L2,
609  KMP_HW_L1,
610  KMP_HW_CORE,
611  KMP_HW_THREAD,
612  KMP_HW_LAST
613 };
614 
615 #define KMP_ASSERT_VALID_HW_TYPE(type) \
616  KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
617 
618 #define KMP_FOREACH_HW_TYPE(type) \
619  for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
620  type = (kmp_hw_t)((int)type + 1))
621 
622 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
623 
624 /* Only Linux* OS and Windows* OS support thread affinity. */
625 #if KMP_AFFINITY_SUPPORTED
626 
627 // GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
628 #if KMP_OS_WINDOWS
629 #if _MSC_VER < 1600 && KMP_MSVC_COMPAT
630 typedef struct GROUP_AFFINITY {
631  KAFFINITY Mask;
632  WORD Group;
633  WORD Reserved[3];
634 } GROUP_AFFINITY;
635 #endif /* _MSC_VER < 1600 */
636 #if KMP_GROUP_AFFINITY
637 extern int __kmp_num_proc_groups;
638 #else
639 static const int __kmp_num_proc_groups = 1;
640 #endif /* KMP_GROUP_AFFINITY */
641 typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
642 extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
643 
644 typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
645 extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
646 
647 typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
648 extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
649 
650 typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
651  GROUP_AFFINITY *);
652 extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
653 #endif /* KMP_OS_WINDOWS */
654 
655 #if KMP_USE_HWLOC
656 extern hwloc_topology_t __kmp_hwloc_topology;
657 extern int __kmp_hwloc_error;
658 extern int __kmp_numa_detected;
659 extern int __kmp_tile_depth;
660 #endif
661 
662 extern size_t __kmp_affin_mask_size;
663 #define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
664 #define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
665 #define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
666 #define KMP_CPU_SET_ITERATE(i, mask) \
667  for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
668 #define KMP_CPU_SET(i, mask) (mask)->set(i)
669 #define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
670 #define KMP_CPU_CLR(i, mask) (mask)->clear(i)
671 #define KMP_CPU_ZERO(mask) (mask)->zero()
672 #define KMP_CPU_COPY(dest, src) (dest)->copy(src)
673 #define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
674 #define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
675 #define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
676 #define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
677 #define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
678 #define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
679 #define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
680 #define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
681 #define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
682 #define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
683 #define KMP_CPU_ALLOC_ARRAY(arr, n) \
684  (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
685 #define KMP_CPU_FREE_ARRAY(arr, n) \
686  __kmp_affinity_dispatch->deallocate_mask_array(arr)
687 #define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
688 #define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
689 #define __kmp_get_system_affinity(mask, abort_bool) \
690  (mask)->get_system_affinity(abort_bool)
691 #define __kmp_set_system_affinity(mask, abort_bool) \
692  (mask)->set_system_affinity(abort_bool)
693 #define __kmp_get_proc_group(mask) (mask)->get_proc_group()
694 
695 class KMPAffinity {
696 public:
697  class Mask {
698  public:
699  void *operator new(size_t n);
700  void operator delete(void *p);
701  void *operator new[](size_t n);
702  void operator delete[](void *p);
703  virtual ~Mask() {}
704  // Set bit i to 1
705  virtual void set(int i) {}
706  // Return bit i
707  virtual bool is_set(int i) const { return false; }
708  // Set bit i to 0
709  virtual void clear(int i) {}
710  // Zero out entire mask
711  virtual void zero() {}
712  // Copy src into this mask
713  virtual void copy(const Mask *src) {}
714  // this &= rhs
715  virtual void bitwise_and(const Mask *rhs) {}
716  // this |= rhs
717  virtual void bitwise_or(const Mask *rhs) {}
718  // this = ~this
719  virtual void bitwise_not() {}
720  // API for iterating over an affinity mask
721  // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
722  virtual int begin() const { return 0; }
723  virtual int end() const { return 0; }
724  virtual int next(int previous) const { return 0; }
725 #if KMP_OS_WINDOWS
726  virtual int set_process_affinity(bool abort_on_error) const { return -1; }
727 #endif
728  // Set the system's affinity to this affinity mask's value
729  virtual int set_system_affinity(bool abort_on_error) const { return -1; }
730  // Set this affinity mask to the current system affinity
731  virtual int get_system_affinity(bool abort_on_error) { return -1; }
732  // Only 1 DWORD in the mask should have any procs set.
733  // Return the appropriate index, or -1 for an invalid mask.
734  virtual int get_proc_group() const { return -1; }
735  };
736  void *operator new(size_t n);
737  void operator delete(void *p);
738  // Need virtual destructor
739  virtual ~KMPAffinity() = default;
740  // Determine if affinity is capable
741  virtual void determine_capable(const char *env_var) {}
742  // Bind the current thread to os proc
743  virtual void bind_thread(int proc) {}
744  // Factory functions to allocate/deallocate a mask
745  virtual Mask *allocate_mask() { return nullptr; }
746  virtual void deallocate_mask(Mask *m) {}
747  virtual Mask *allocate_mask_array(int num) { return nullptr; }
748  virtual void deallocate_mask_array(Mask *m) {}
749  virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
750  static void pick_api();
751  static void destroy_api();
752  enum api_type {
753  NATIVE_OS
754 #if KMP_USE_HWLOC
755  ,
756  HWLOC
757 #endif
758  };
759  virtual api_type get_api_type() const {
760  KMP_ASSERT(0);
761  return NATIVE_OS;
762  }
763 
764 private:
765  static bool picked_api;
766 };
767 
768 typedef KMPAffinity::Mask kmp_affin_mask_t;
769 extern KMPAffinity *__kmp_affinity_dispatch;
770 
771 // Declare local char buffers with this size for printing debug and info
772 // messages, using __kmp_affinity_print_mask().
773 #define KMP_AFFIN_MASK_PRINT_LEN 1024
774 
775 enum affinity_type {
776  affinity_none = 0,
777  affinity_physical,
778  affinity_logical,
779  affinity_compact,
780  affinity_scatter,
781  affinity_explicit,
782  affinity_balanced,
783  affinity_disabled, // not used outsize the env var parser
784  affinity_default
785 };
786 
787 enum affinity_gran {
788  affinity_gran_fine = 0,
789  affinity_gran_thread,
790  affinity_gran_core,
791  affinity_gran_tile,
792  affinity_gran_die,
793  affinity_gran_numa,
794  affinity_gran_package,
795  affinity_gran_node,
796 #if KMP_GROUP_AFFINITY
797  // The "group" granularity isn't necesssarily coarser than all of the
798  // other levels, but we put it last in the enum.
799  affinity_gran_group,
800 #endif /* KMP_GROUP_AFFINITY */
801  affinity_gran_default
802 };
803 
804 enum affinity_top_method {
805  affinity_top_method_all = 0, // try all (supported) methods, in order
806 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
807  affinity_top_method_apicid,
808  affinity_top_method_x2apicid,
809  affinity_top_method_x2apicid_1f,
810 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
811  affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
812 #if KMP_GROUP_AFFINITY
813  affinity_top_method_group,
814 #endif /* KMP_GROUP_AFFINITY */
815  affinity_top_method_flat,
816 #if KMP_USE_HWLOC
817  affinity_top_method_hwloc,
818 #endif
819  affinity_top_method_default
820 };
821 
822 #define affinity_respect_mask_default (-1)
823 
824 extern enum affinity_type __kmp_affinity_type; /* Affinity type */
825 extern enum affinity_gran __kmp_affinity_gran; /* Affinity granularity */
826 extern int __kmp_affinity_gran_levels; /* corresponding int value */
827 extern int __kmp_affinity_dups; /* Affinity duplicate masks */
828 extern enum affinity_top_method __kmp_affinity_top_method;
829 extern int __kmp_affinity_compact; /* Affinity 'compact' value */
830 extern int __kmp_affinity_offset; /* Affinity offset value */
831 extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
832 extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
833 extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
834 extern char *__kmp_affinity_proclist; /* proc ID list */
835 extern kmp_affin_mask_t *__kmp_affinity_masks;
836 extern unsigned __kmp_affinity_num_masks;
837 extern void __kmp_affinity_bind_thread(int which);
838 
839 extern kmp_affin_mask_t *__kmp_affin_fullMask;
840 extern char *__kmp_cpuinfo_file;
841 
842 #endif /* KMP_AFFINITY_SUPPORTED */
843 
844 // This needs to be kept in sync with the values in omp.h !!!
845 typedef enum kmp_proc_bind_t {
846  proc_bind_false = 0,
847  proc_bind_true,
848  proc_bind_master,
849  proc_bind_close,
850  proc_bind_spread,
851  proc_bind_intel, // use KMP_AFFINITY interface
852  proc_bind_default
853 } kmp_proc_bind_t;
854 
855 typedef struct kmp_nested_proc_bind_t {
856  kmp_proc_bind_t *bind_types;
857  int size;
858  int used;
859 } kmp_nested_proc_bind_t;
860 
861 extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
862 
863 extern int __kmp_display_affinity;
864 extern char *__kmp_affinity_format;
865 static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
866 
867 #if KMP_AFFINITY_SUPPORTED
868 #define KMP_PLACE_ALL (-1)
869 #define KMP_PLACE_UNDEFINED (-2)
870 // Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
871 #define KMP_AFFINITY_NON_PROC_BIND \
872  ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
873  __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
874  (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
875 #endif /* KMP_AFFINITY_SUPPORTED */
876 
877 extern int __kmp_affinity_num_places;
878 
879 typedef enum kmp_cancel_kind_t {
880  cancel_noreq = 0,
881  cancel_parallel = 1,
882  cancel_loop = 2,
883  cancel_sections = 3,
884  cancel_taskgroup = 4
885 } kmp_cancel_kind_t;
886 
887 // KMP_HW_SUBSET support:
888 typedef struct kmp_hws_item {
889  int num;
890  int offset;
891 } kmp_hws_item_t;
892 
893 extern kmp_hws_item_t __kmp_hws_socket;
894 extern kmp_hws_item_t __kmp_hws_die;
895 extern kmp_hws_item_t __kmp_hws_node;
896 extern kmp_hws_item_t __kmp_hws_tile;
897 extern kmp_hws_item_t __kmp_hws_core;
898 extern kmp_hws_item_t __kmp_hws_proc;
899 extern int __kmp_hws_requested;
900 extern int __kmp_hws_abs_flag; // absolute or per-item number requested
901 
902 /* ------------------------------------------------------------------------ */
903 
904 #define KMP_PAD(type, sz) \
905  (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
906 
907 // We need to avoid using -1 as a GTID as +1 is added to the gtid
908 // when storing it in a lock, and the value 0 is reserved.
909 #define KMP_GTID_DNE (-2) /* Does not exist */
910 #define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
911 #define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
912 #define KMP_GTID_UNKNOWN (-5) /* Is not known */
913 #define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
914 
915 /* OpenMP 5.0 Memory Management support */
916 
917 #ifndef __OMP_H
918 // Duplicate type definitions from omp.h
919 typedef uintptr_t omp_uintptr_t;
920 
921 typedef enum {
922  omp_atk_sync_hint = 1,
923  omp_atk_alignment = 2,
924  omp_atk_access = 3,
925  omp_atk_pool_size = 4,
926  omp_atk_fallback = 5,
927  omp_atk_fb_data = 6,
928  omp_atk_pinned = 7,
929  omp_atk_partition = 8
930 } omp_alloctrait_key_t;
931 
932 typedef enum {
933  omp_atv_false = 0,
934  omp_atv_true = 1,
935  omp_atv_contended = 3,
936  omp_atv_uncontended = 4,
937  omp_atv_serialized = 5,
938  omp_atv_sequential = omp_atv_serialized, // (deprecated)
939  omp_atv_private = 6,
940  omp_atv_all = 7,
941  omp_atv_thread = 8,
942  omp_atv_pteam = 9,
943  omp_atv_cgroup = 10,
944  omp_atv_default_mem_fb = 11,
945  omp_atv_null_fb = 12,
946  omp_atv_abort_fb = 13,
947  omp_atv_allocator_fb = 14,
948  omp_atv_environment = 15,
949  omp_atv_nearest = 16,
950  omp_atv_blocked = 17,
951  omp_atv_interleaved = 18
952 } omp_alloctrait_value_t;
953 #define omp_atv_default ((omp_uintptr_t)-1)
954 
955 typedef void *omp_memspace_handle_t;
956 extern omp_memspace_handle_t const omp_default_mem_space;
957 extern omp_memspace_handle_t const omp_large_cap_mem_space;
958 extern omp_memspace_handle_t const omp_const_mem_space;
959 extern omp_memspace_handle_t const omp_high_bw_mem_space;
960 extern omp_memspace_handle_t const omp_low_lat_mem_space;
961 
962 typedef struct {
963  omp_alloctrait_key_t key;
964  omp_uintptr_t value;
965 } omp_alloctrait_t;
966 
967 typedef void *omp_allocator_handle_t;
968 extern omp_allocator_handle_t const omp_null_allocator;
969 extern omp_allocator_handle_t const omp_default_mem_alloc;
970 extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
971 extern omp_allocator_handle_t const omp_const_mem_alloc;
972 extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
973 extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
974 extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
975 extern omp_allocator_handle_t const omp_pteam_mem_alloc;
976 extern omp_allocator_handle_t const omp_thread_mem_alloc;
977 extern omp_allocator_handle_t const kmp_max_mem_alloc;
978 extern omp_allocator_handle_t __kmp_def_allocator;
979 
980 // end of duplicate type definitions from omp.h
981 #endif
982 
983 extern int __kmp_memkind_available;
984 
985 typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
986 
987 typedef struct kmp_allocator_t {
988  omp_memspace_handle_t memspace;
989  void **memkind; // pointer to memkind
990  int alignment;
991  omp_alloctrait_value_t fb;
992  kmp_allocator_t *fb_data;
993  kmp_uint64 pool_size;
994  kmp_uint64 pool_used;
995 } kmp_allocator_t;
996 
997 extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
998  omp_memspace_handle_t,
999  int ntraits,
1000  omp_alloctrait_t traits[]);
1001 extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1002 extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1003 extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1004 extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1005 extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1006  omp_allocator_handle_t al);
1007 extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1008  omp_allocator_handle_t al,
1009  omp_allocator_handle_t free_al);
1010 extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1011 
1012 extern void __kmp_init_memkind();
1013 extern void __kmp_fini_memkind();
1014 
1015 /* ------------------------------------------------------------------------ */
1016 
1017 #define KMP_UINT64_MAX \
1018  (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1019 
1020 #define KMP_MIN_NTH 1
1021 
1022 #ifndef KMP_MAX_NTH
1023 #if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1024 #define KMP_MAX_NTH PTHREAD_THREADS_MAX
1025 #else
1026 #define KMP_MAX_NTH INT_MAX
1027 #endif
1028 #endif /* KMP_MAX_NTH */
1029 
1030 #ifdef PTHREAD_STACK_MIN
1031 #define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1032 #else
1033 #define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1034 #endif
1035 
1036 #define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1037 
1038 #if KMP_ARCH_X86
1039 #define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1040 #elif KMP_ARCH_X86_64
1041 #define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1042 #define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1043 #else
1044 #define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1045 #endif
1046 
1047 #define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1048 #define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1049 #define KMP_MAX_MALLOC_POOL_INCR \
1050  (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1051 
1052 #define KMP_MIN_STKOFFSET (0)
1053 #define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1054 #if KMP_OS_DARWIN
1055 #define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1056 #else
1057 #define KMP_DEFAULT_STKOFFSET CACHE_LINE
1058 #endif
1059 
1060 #define KMP_MIN_STKPADDING (0)
1061 #define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1062 
1063 #define KMP_BLOCKTIME_MULTIPLIER \
1064  (1000) /* number of blocktime units per second */
1065 #define KMP_MIN_BLOCKTIME (0)
1066 #define KMP_MAX_BLOCKTIME \
1067  (INT_MAX) /* Must be this for "infinite" setting the work */
1068 #define KMP_DEFAULT_BLOCKTIME (200) /* __kmp_blocktime is in milliseconds */
1069 
1070 #if KMP_USE_MONITOR
1071 #define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1072 #define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1073 #define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1074 
1075 /* Calculate new number of monitor wakeups for a specific block time based on
1076  previous monitor_wakeups. Only allow increasing number of wakeups */
1077 #define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1078  (((blocktime) == KMP_MAX_BLOCKTIME) \
1079  ? (monitor_wakeups) \
1080  : ((blocktime) == KMP_MIN_BLOCKTIME) \
1081  ? KMP_MAX_MONITOR_WAKEUPS \
1082  : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1083  ? (monitor_wakeups) \
1084  : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1085 
1086 /* Calculate number of intervals for a specific block time based on
1087  monitor_wakeups */
1088 #define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1089  (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1090  (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1091 #else
1092 #define KMP_BLOCKTIME(team, tid) \
1093  (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1094 #if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1095 // HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1096 extern kmp_uint64 __kmp_ticks_per_msec;
1097 #if KMP_COMPILER_ICC
1098 #define KMP_NOW() ((kmp_uint64)_rdtsc())
1099 #else
1100 #define KMP_NOW() __kmp_hardware_timestamp()
1101 #endif
1102 #define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1103 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1104  (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1105 #define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1106 #else
1107 // System time is retrieved sporadically while blocking.
1108 extern kmp_uint64 __kmp_now_nsec();
1109 #define KMP_NOW() __kmp_now_nsec()
1110 #define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1111 #define KMP_BLOCKTIME_INTERVAL(team, tid) \
1112  (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1113 #define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1114 #endif
1115 #endif // KMP_USE_MONITOR
1116 
1117 #define KMP_MIN_STATSCOLS 40
1118 #define KMP_MAX_STATSCOLS 4096
1119 #define KMP_DEFAULT_STATSCOLS 80
1120 
1121 #define KMP_MIN_INTERVAL 0
1122 #define KMP_MAX_INTERVAL (INT_MAX - 1)
1123 #define KMP_DEFAULT_INTERVAL 0
1124 
1125 #define KMP_MIN_CHUNK 1
1126 #define KMP_MAX_CHUNK (INT_MAX - 1)
1127 #define KMP_DEFAULT_CHUNK 1
1128 
1129 #define KMP_DFLT_DISP_NUM_BUFF 7
1130 #define KMP_MAX_ORDERED 8
1131 
1132 #define KMP_MAX_FIELDS 32
1133 
1134 #define KMP_MAX_BRANCH_BITS 31
1135 
1136 #define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1137 
1138 #define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1139 
1140 #define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1141 
1142 /* Minimum number of threads before switch to TLS gtid (experimentally
1143  determined) */
1144 /* josh TODO: what about OS X* tuning? */
1145 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1146 #define KMP_TLS_GTID_MIN 5
1147 #else
1148 #define KMP_TLS_GTID_MIN INT_MAX
1149 #endif
1150 
1151 #define KMP_MASTER_TID(tid) (0 == (tid))
1152 #define KMP_WORKER_TID(tid) (0 != (tid))
1153 
1154 #define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1155 #define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1156 #define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1157 
1158 #ifndef TRUE
1159 #define FALSE 0
1160 #define TRUE (!FALSE)
1161 #endif
1162 
1163 /* NOTE: all of the following constants must be even */
1164 
1165 #if KMP_OS_WINDOWS
1166 #define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1167 #define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1168 #elif KMP_OS_LINUX
1169 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1170 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1171 #elif KMP_OS_DARWIN
1172 /* TODO: tune for KMP_OS_DARWIN */
1173 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1174 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1175 #elif KMP_OS_DRAGONFLY
1176 /* TODO: tune for KMP_OS_DRAGONFLY */
1177 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1178 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1179 #elif KMP_OS_FREEBSD
1180 /* TODO: tune for KMP_OS_FREEBSD */
1181 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1182 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1183 #elif KMP_OS_NETBSD
1184 /* TODO: tune for KMP_OS_NETBSD */
1185 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1186 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1187 #elif KMP_OS_HURD
1188 /* TODO: tune for KMP_OS_HURD */
1189 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1190 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1191 #elif KMP_OS_OPENBSD
1192 /* TODO: tune for KMP_OS_OPENBSD */
1193 #define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1194 #define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1195 #endif
1196 
1197 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1198 typedef struct kmp_cpuid {
1199  kmp_uint32 eax;
1200  kmp_uint32 ebx;
1201  kmp_uint32 ecx;
1202  kmp_uint32 edx;
1203 } kmp_cpuid_t;
1204 
1205 typedef struct kmp_cpuinfo {
1206  int initialized; // If 0, other fields are not initialized.
1207  int signature; // CPUID(1).EAX
1208  int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1209  int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1210  // Model << 4 ) + Model)
1211  int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1212  int sse2; // 0 if SSE2 instructions are not supported, 1 otherwise.
1213  int rtm; // 0 if RTM instructions are not supported, 1 otherwise.
1214  int cpu_stackoffset;
1215  int apic_id;
1216  int physical_id;
1217  int logical_id;
1218  kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1219  char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1220 } kmp_cpuinfo_t;
1221 
1222 extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1223 
1224 #if KMP_OS_UNIX
1225 // subleaf is only needed for cache and topology discovery and can be set to
1226 // zero in most cases
1227 static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1228  __asm__ __volatile__("cpuid"
1229  : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1230  : "a"(leaf), "c"(subleaf));
1231 }
1232 // Load p into FPU control word
1233 static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1234  __asm__ __volatile__("fldcw %0" : : "m"(*p));
1235 }
1236 // Store FPU control word into p
1237 static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1238  __asm__ __volatile__("fstcw %0" : "=m"(*p));
1239 }
1240 static inline void __kmp_clear_x87_fpu_status_word() {
1241 #if KMP_MIC
1242  // 32-bit protected mode x87 FPU state
1243  struct x87_fpu_state {
1244  unsigned cw;
1245  unsigned sw;
1246  unsigned tw;
1247  unsigned fip;
1248  unsigned fips;
1249  unsigned fdp;
1250  unsigned fds;
1251  };
1252  struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1253  __asm__ __volatile__("fstenv %0\n\t" // store FP env
1254  "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1255  "fldenv %0\n\t" // load FP env back
1256  : "+m"(fpu_state), "+m"(fpu_state.sw));
1257 #else
1258  __asm__ __volatile__("fnclex");
1259 #endif // KMP_MIC
1260 }
1261 #if __SSE__
1262 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1263 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1264 #else
1265 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1266 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1267 #endif
1268 #else
1269 // Windows still has these as external functions in assembly file
1270 extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1271 extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1272 extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1273 extern void __kmp_clear_x87_fpu_status_word();
1274 static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1275 static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1276 #endif // KMP_OS_UNIX
1277 
1278 #define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1279 
1280 #if KMP_ARCH_X86
1281 extern void __kmp_x86_pause(void);
1282 #elif KMP_MIC
1283 // Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1284 // regression after removal of extra PAUSE from spin loops. Changing
1285 // the delay from 100 to 300 showed even better performance than double PAUSE
1286 // on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1287 static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1288 #else
1289 static inline void __kmp_x86_pause(void) { _mm_pause(); }
1290 #endif
1291 #define KMP_CPU_PAUSE() __kmp_x86_pause()
1292 #elif KMP_ARCH_PPC64
1293 #define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1294 #define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1295 #define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1296 #define KMP_CPU_PAUSE() \
1297  do { \
1298  KMP_PPC64_PRI_LOW(); \
1299  KMP_PPC64_PRI_MED(); \
1300  KMP_PPC64_PRI_LOC_MB(); \
1301  } while (0)
1302 #else
1303 #define KMP_CPU_PAUSE() /* nothing to do */
1304 #endif
1305 
1306 #define KMP_INIT_YIELD(count) \
1307  { (count) = __kmp_yield_init; }
1308 
1309 #define KMP_OVERSUBSCRIBED \
1310  (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1311 
1312 #define KMP_TRY_YIELD \
1313  ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1314 
1315 #define KMP_TRY_YIELD_OVERSUB \
1316  ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1317 
1318 #define KMP_YIELD(cond) \
1319  { \
1320  KMP_CPU_PAUSE(); \
1321  if ((cond) && (KMP_TRY_YIELD)) \
1322  __kmp_yield(); \
1323  }
1324 
1325 #define KMP_YIELD_OVERSUB() \
1326  { \
1327  KMP_CPU_PAUSE(); \
1328  if ((KMP_TRY_YIELD_OVERSUB)) \
1329  __kmp_yield(); \
1330  }
1331 
1332 // Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1333 // there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1334 #define KMP_YIELD_SPIN(count) \
1335  { \
1336  KMP_CPU_PAUSE(); \
1337  if (KMP_TRY_YIELD) { \
1338  (count) -= 2; \
1339  if (!(count)) { \
1340  __kmp_yield(); \
1341  (count) = __kmp_yield_next; \
1342  } \
1343  } \
1344  }
1345 
1346 #define KMP_YIELD_OVERSUB_ELSE_SPIN(count) \
1347  { \
1348  KMP_CPU_PAUSE(); \
1349  if ((KMP_TRY_YIELD_OVERSUB)) \
1350  __kmp_yield(); \
1351  else if (__kmp_use_yield == 1) { \
1352  (count) -= 2; \
1353  if (!(count)) { \
1354  __kmp_yield(); \
1355  (count) = __kmp_yield_next; \
1356  } \
1357  } \
1358  }
1359 
1360 // User-level Monitor/Mwait
1361 #if KMP_HAVE_UMWAIT
1362 // We always try for UMWAIT first
1363 #if KMP_HAVE_WAITPKG_INTRINSICS
1364 #if KMP_HAVE_IMMINTRIN_H
1365 #include <immintrin.h>
1366 #elif KMP_HAVE_INTRIN_H
1367 #include <intrin.h>
1368 #endif
1369 #endif // KMP_HAVE_WAITPKG_INTRINSICS
1370 KMP_ATTRIBUTE_TARGET_WAITPKG
1371 static inline int
1372 __kmp_tpause(uint32_t hint, uint64_t counter) {
1373 #if !KMP_HAVE_WAITPKG_INTRINSICS
1374  uint32_t timeHi = uint32_t(counter >> 32);
1375  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1376  char flag;
1377  __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1378  "setb %0"
1379  : "=r"(flag)
1380  : "a"(timeLo), "d"(timeHi), "c"(hint)
1381  :);
1382  return flag;
1383 #else
1384  return _tpause(hint, counter);
1385 #endif
1386 }
1387 KMP_ATTRIBUTE_TARGET_WAITPKG
1388 static inline void
1389 __kmp_umonitor(void *cacheline) {
1390 #if !KMP_HAVE_WAITPKG_INTRINSICS
1391  __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1392  :
1393  : "a"(cacheline)
1394  :);
1395 #else
1396  _umonitor(cacheline);
1397 #endif
1398 }
1399 KMP_ATTRIBUTE_TARGET_WAITPKG
1400 static inline int
1401 __kmp_umwait(uint32_t hint, uint64_t counter) {
1402 #if !KMP_HAVE_WAITPKG_INTRINSICS
1403  uint32_t timeHi = uint32_t(counter >> 32);
1404  uint32_t timeLo = uint32_t(counter & 0xffffffff);
1405  char flag;
1406  __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1407  "setb %0"
1408  : "=r"(flag)
1409  : "a"(timeLo), "d"(timeHi), "c"(hint)
1410  :);
1411  return flag;
1412 #else
1413  return _umwait(hint, counter);
1414 #endif
1415 }
1416 #elif KMP_HAVE_MWAIT
1417 #if KMP_OS_UNIX
1418 #include <pmmintrin.h>
1419 #else
1420 #include <intrin.h>
1421 #endif
1422 #if KMP_OS_UNIX
1423 __attribute__((target("sse3")))
1424 #endif
1425 static inline void
1426 __kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1427  _mm_monitor(cacheline, extensions, hints);
1428 }
1429 #if KMP_OS_UNIX
1430 __attribute__((target("sse3")))
1431 #endif
1432 static inline void
1433 __kmp_mm_mwait(unsigned extensions, unsigned hints) {
1434  _mm_mwait(extensions, hints);
1435 }
1436 #endif // KMP_HAVE_UMWAIT
1437 
1438 /* ------------------------------------------------------------------------ */
1439 /* Support datatypes for the orphaned construct nesting checks. */
1440 /* ------------------------------------------------------------------------ */
1441 
1442 enum cons_type {
1443  ct_none,
1444  ct_parallel,
1445  ct_pdo,
1446  ct_pdo_ordered,
1447  ct_psections,
1448  ct_psingle,
1449  ct_critical,
1450  ct_ordered_in_parallel,
1451  ct_ordered_in_pdo,
1452  ct_master,
1453  ct_reduce,
1454  ct_barrier
1455 };
1456 
1457 #define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1458 
1459 struct cons_data {
1460  ident_t const *ident;
1461  enum cons_type type;
1462  int prev;
1463  kmp_user_lock_p
1464  name; /* address exclusively for critical section name comparison */
1465 };
1466 
1467 struct cons_header {
1468  int p_top, w_top, s_top;
1469  int stack_size, stack_top;
1470  struct cons_data *stack_data;
1471 };
1472 
1473 struct kmp_region_info {
1474  char *text;
1475  int offset[KMP_MAX_FIELDS];
1476  int length[KMP_MAX_FIELDS];
1477 };
1478 
1479 /* ---------------------------------------------------------------------- */
1480 /* ---------------------------------------------------------------------- */
1481 
1482 #if KMP_OS_WINDOWS
1483 typedef HANDLE kmp_thread_t;
1484 typedef DWORD kmp_key_t;
1485 #endif /* KMP_OS_WINDOWS */
1486 
1487 #if KMP_OS_UNIX
1488 typedef pthread_t kmp_thread_t;
1489 typedef pthread_key_t kmp_key_t;
1490 #endif
1491 
1492 extern kmp_key_t __kmp_gtid_threadprivate_key;
1493 
1494 typedef struct kmp_sys_info {
1495  long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1496  long minflt; /* the number of page faults serviced without any I/O */
1497  long majflt; /* the number of page faults serviced that required I/O */
1498  long nswap; /* the number of times a process was "swapped" out of memory */
1499  long inblock; /* the number of times the file system had to perform input */
1500  long oublock; /* the number of times the file system had to perform output */
1501  long nvcsw; /* the number of times a context switch was voluntarily */
1502  long nivcsw; /* the number of times a context switch was forced */
1503 } kmp_sys_info_t;
1504 
1505 #if USE_ITT_BUILD
1506 // We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1507 // required type here. Later we will check the type meets requirements.
1508 typedef int kmp_itt_mark_t;
1509 #define KMP_ITT_DEBUG 0
1510 #endif /* USE_ITT_BUILD */
1511 
1512 typedef kmp_int32 kmp_critical_name[8];
1513 
1523 typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1524 typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1525  ...);
1526 
1531 /* ---------------------------------------------------------------------------
1532  */
1533 /* Threadprivate initialization/finalization function declarations */
1534 
1535 /* for non-array objects: __kmpc_threadprivate_register() */
1536 
1541 typedef void *(*kmpc_ctor)(void *);
1542 
1547 typedef void (*kmpc_dtor)(
1548  void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1549  compiler */
1554 typedef void *(*kmpc_cctor)(void *, void *);
1555 
1556 /* for array objects: __kmpc_threadprivate_register_vec() */
1557 /* First arg: "this" pointer */
1558 /* Last arg: number of array elements */
1564 typedef void *(*kmpc_ctor_vec)(void *, size_t);
1570 typedef void (*kmpc_dtor_vec)(void *, size_t);
1576 typedef void *(*kmpc_cctor_vec)(void *, void *,
1577  size_t); /* function unused by compiler */
1578 
1583 /* keeps tracked of threadprivate cache allocations for cleanup later */
1584 typedef struct kmp_cached_addr {
1585  void **addr; /* address of allocated cache */
1586  void ***compiler_cache; /* pointer to compiler's cache */
1587  void *data; /* pointer to global data */
1588  struct kmp_cached_addr *next; /* pointer to next cached address */
1589 } kmp_cached_addr_t;
1590 
1591 struct private_data {
1592  struct private_data *next; /* The next descriptor in the list */
1593  void *data; /* The data buffer for this descriptor */
1594  int more; /* The repeat count for this descriptor */
1595  size_t size; /* The data size for this descriptor */
1596 };
1597 
1598 struct private_common {
1599  struct private_common *next;
1600  struct private_common *link;
1601  void *gbl_addr;
1602  void *par_addr; /* par_addr == gbl_addr for MASTER thread */
1603  size_t cmn_size;
1604 };
1605 
1606 struct shared_common {
1607  struct shared_common *next;
1608  struct private_data *pod_init;
1609  void *obj_init;
1610  void *gbl_addr;
1611  union {
1612  kmpc_ctor ctor;
1613  kmpc_ctor_vec ctorv;
1614  } ct;
1615  union {
1616  kmpc_cctor cctor;
1617  kmpc_cctor_vec cctorv;
1618  } cct;
1619  union {
1620  kmpc_dtor dtor;
1621  kmpc_dtor_vec dtorv;
1622  } dt;
1623  size_t vec_len;
1624  int is_vec;
1625  size_t cmn_size;
1626 };
1627 
1628 #define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1629 #define KMP_HASH_TABLE_SIZE \
1630  (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1631 #define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1632 #define KMP_HASH(x) \
1633  ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1634 
1635 struct common_table {
1636  struct private_common *data[KMP_HASH_TABLE_SIZE];
1637 };
1638 
1639 struct shared_table {
1640  struct shared_common *data[KMP_HASH_TABLE_SIZE];
1641 };
1642 
1643 /* ------------------------------------------------------------------------ */
1644 
1645 #if KMP_USE_HIER_SCHED
1646 // Shared barrier data that exists inside a single unit of the scheduling
1647 // hierarchy
1648 typedef struct kmp_hier_private_bdata_t {
1649  kmp_int32 num_active;
1650  kmp_uint64 index;
1651  kmp_uint64 wait_val[2];
1652 } kmp_hier_private_bdata_t;
1653 #endif
1654 
1655 typedef struct kmp_sched_flags {
1656  unsigned ordered : 1;
1657  unsigned nomerge : 1;
1658  unsigned contains_last : 1;
1659 #if KMP_USE_HIER_SCHED
1660  unsigned use_hier : 1;
1661  unsigned unused : 28;
1662 #else
1663  unsigned unused : 29;
1664 #endif
1665 } kmp_sched_flags_t;
1666 
1667 KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1668 
1669 #if KMP_STATIC_STEAL_ENABLED
1670 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1671  kmp_int32 count;
1672  kmp_int32 ub;
1673  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1674  kmp_int32 lb;
1675  kmp_int32 st;
1676  kmp_int32 tc;
1677  kmp_int32 static_steal_counter; /* for static_steal only; maybe better to put
1678  after ub */
1679  kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1680  // KMP_ALIGN( 16 ) ensures ( if the KMP_ALIGN macro is turned on )
1681  // a) parm3 is properly aligned and
1682  // b) all parm1-4 are in the same cache line.
1683  // Because of parm1-4 are used together, performance seems to be better
1684  // if they are in the same line (not measured though).
1685 
1686  struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1687  kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1688  kmp_int32 parm2; // make no real change at least while padding is off.
1689  kmp_int32 parm3;
1690  kmp_int32 parm4;
1691  };
1692 
1693  kmp_uint32 ordered_lower;
1694  kmp_uint32 ordered_upper;
1695 #if KMP_OS_WINDOWS
1696  // This var can be placed in the hole between 'tc' and 'parm1', instead of
1697  // 'static_steal_counter'. It would be nice to measure execution times.
1698  // Conditional if/endif can be removed at all.
1699  kmp_int32 last_upper;
1700 #endif /* KMP_OS_WINDOWS */
1701 } dispatch_private_info32_t;
1702 
1703 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1704  kmp_int64 count; // current chunk number for static & static-steal scheduling
1705  kmp_int64 ub; /* upper-bound */
1706  /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1707  kmp_int64 lb; /* lower-bound */
1708  kmp_int64 st; /* stride */
1709  kmp_int64 tc; /* trip count (number of iterations) */
1710  kmp_int64 static_steal_counter; /* for static_steal only; maybe better to put
1711  after ub */
1712  kmp_lock_t *th_steal_lock; // lock used for chunk stealing
1713  /* parm[1-4] are used in different ways by different scheduling algorithms */
1714 
1715  // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1716  // a) parm3 is properly aligned and
1717  // b) all parm1-4 are in the same cache line.
1718  // Because of parm1-4 are used together, performance seems to be better
1719  // if they are in the same line (not measured though).
1720 
1721  struct KMP_ALIGN(32) {
1722  kmp_int64 parm1;
1723  kmp_int64 parm2;
1724  kmp_int64 parm3;
1725  kmp_int64 parm4;
1726  };
1727 
1728  kmp_uint64 ordered_lower;
1729  kmp_uint64 ordered_upper;
1730 #if KMP_OS_WINDOWS
1731  // This var can be placed in the hole between 'tc' and 'parm1', instead of
1732  // 'static_steal_counter'. It would be nice to measure execution times.
1733  // Conditional if/endif can be removed at all.
1734  kmp_int64 last_upper;
1735 #endif /* KMP_OS_WINDOWS */
1736 } dispatch_private_info64_t;
1737 #else /* KMP_STATIC_STEAL_ENABLED */
1738 typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1739  kmp_int32 lb;
1740  kmp_int32 ub;
1741  kmp_int32 st;
1742  kmp_int32 tc;
1743 
1744  kmp_int32 parm1;
1745  kmp_int32 parm2;
1746  kmp_int32 parm3;
1747  kmp_int32 parm4;
1748 
1749  kmp_int32 count;
1750 
1751  kmp_uint32 ordered_lower;
1752  kmp_uint32 ordered_upper;
1753 #if KMP_OS_WINDOWS
1754  kmp_int32 last_upper;
1755 #endif /* KMP_OS_WINDOWS */
1756 } dispatch_private_info32_t;
1757 
1758 typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1759  kmp_int64 lb; /* lower-bound */
1760  kmp_int64 ub; /* upper-bound */
1761  kmp_int64 st; /* stride */
1762  kmp_int64 tc; /* trip count (number of iterations) */
1763 
1764  /* parm[1-4] are used in different ways by different scheduling algorithms */
1765  kmp_int64 parm1;
1766  kmp_int64 parm2;
1767  kmp_int64 parm3;
1768  kmp_int64 parm4;
1769 
1770  kmp_int64 count; /* current chunk number for static scheduling */
1771 
1772  kmp_uint64 ordered_lower;
1773  kmp_uint64 ordered_upper;
1774 #if KMP_OS_WINDOWS
1775  kmp_int64 last_upper;
1776 #endif /* KMP_OS_WINDOWS */
1777 } dispatch_private_info64_t;
1778 #endif /* KMP_STATIC_STEAL_ENABLED */
1779 
1780 typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1781  union private_info {
1782  dispatch_private_info32_t p32;
1783  dispatch_private_info64_t p64;
1784  } u;
1785  enum sched_type schedule; /* scheduling algorithm */
1786  kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1787  kmp_int32 ordered_bumped;
1788  // To retain the structure size after making ordered_iteration scalar
1789  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 3];
1790  // Stack of buffers for nest of serial regions
1791  struct dispatch_private_info *next;
1792  kmp_int32 type_size; /* the size of types in private_info */
1793 #if KMP_USE_HIER_SCHED
1794  kmp_int32 hier_id;
1795  void *parent; /* hierarchical scheduling parent pointer */
1796 #endif
1797  enum cons_type pushed_ws;
1798 } dispatch_private_info_t;
1799 
1800 typedef struct dispatch_shared_info32 {
1801  /* chunk index under dynamic, number of idle threads under static-steal;
1802  iteration index otherwise */
1803  volatile kmp_uint32 iteration;
1804  volatile kmp_uint32 num_done;
1805  volatile kmp_uint32 ordered_iteration;
1806  // Dummy to retain the structure size after making ordered_iteration scalar
1807  kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1808 } dispatch_shared_info32_t;
1809 
1810 typedef struct dispatch_shared_info64 {
1811  /* chunk index under dynamic, number of idle threads under static-steal;
1812  iteration index otherwise */
1813  volatile kmp_uint64 iteration;
1814  volatile kmp_uint64 num_done;
1815  volatile kmp_uint64 ordered_iteration;
1816  // Dummy to retain the structure size after making ordered_iteration scalar
1817  kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1818 } dispatch_shared_info64_t;
1819 
1820 typedef struct dispatch_shared_info {
1821  union shared_info {
1822  dispatch_shared_info32_t s32;
1823  dispatch_shared_info64_t s64;
1824  } u;
1825  volatile kmp_uint32 buffer_index;
1826  volatile kmp_int32 doacross_buf_idx; // teamwise index
1827  volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1828  kmp_int32 doacross_num_done; // count finished threads
1829 #if KMP_USE_HIER_SCHED
1830  void *hier;
1831 #endif
1832 #if KMP_USE_HWLOC
1833  // When linking with libhwloc, the ORDERED EPCC test slows down on big
1834  // machines (> 48 cores). Performance analysis showed that a cache thrash
1835  // was occurring and this padding helps alleviate the problem.
1836  char padding[64];
1837 #endif
1838 } dispatch_shared_info_t;
1839 
1840 typedef struct kmp_disp {
1841  /* Vector for ORDERED SECTION */
1842  void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1843  /* Vector for END ORDERED SECTION */
1844  void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1845 
1846  dispatch_shared_info_t *th_dispatch_sh_current;
1847  dispatch_private_info_t *th_dispatch_pr_current;
1848 
1849  dispatch_private_info_t *th_disp_buffer;
1850  kmp_int32 th_disp_index;
1851  kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1852  volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1853  kmp_int64 *th_doacross_info; // info on loop bounds
1854 #if KMP_USE_INTERNODE_ALIGNMENT
1855  char more_padding[INTERNODE_CACHE_LINE];
1856 #endif
1857 } kmp_disp_t;
1858 
1859 /* ------------------------------------------------------------------------ */
1860 /* Barrier stuff */
1861 
1862 /* constants for barrier state update */
1863 #define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1864 #define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1865 #define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1866 #define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1867 
1868 #define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1869 #define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1870 #define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1871 
1872 #if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1873 #error "Barrier sleep bit must be smaller than barrier bump bit"
1874 #endif
1875 #if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1876 #error "Barrier unused bit must be smaller than barrier bump bit"
1877 #endif
1878 
1879 // Constants for release barrier wait state: currently, hierarchical only
1880 #define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1881 #define KMP_BARRIER_OWN_FLAG \
1882  1 // Normal state; worker waiting on own b_go flag in release
1883 #define KMP_BARRIER_PARENT_FLAG \
1884  2 // Special state; worker waiting on parent's b_go flag in release
1885 #define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
1886  3 // Special state; tells worker to shift from parent to own b_go
1887 #define KMP_BARRIER_SWITCHING \
1888  4 // Special state; worker resets appropriate flag on wake-up
1889 
1890 #define KMP_NOT_SAFE_TO_REAP \
1891  0 // Thread th_reap_state: not safe to reap (tasking)
1892 #define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1893 
1894 enum barrier_type {
1895  bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1896  barriers if enabled) */
1897  bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1898 #if KMP_FAST_REDUCTION_BARRIER
1899  bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1900 #endif // KMP_FAST_REDUCTION_BARRIER
1901  bs_last_barrier /* Just a placeholder to mark the end */
1902 };
1903 
1904 // to work with reduction barriers just like with plain barriers
1905 #if !KMP_FAST_REDUCTION_BARRIER
1906 #define bs_reduction_barrier bs_plain_barrier
1907 #endif // KMP_FAST_REDUCTION_BARRIER
1908 
1909 typedef enum kmp_bar_pat { /* Barrier communication patterns */
1910  bp_linear_bar =
1911  0, /* Single level (degenerate) tree */
1912  bp_tree_bar =
1913  1, /* Balanced tree with branching factor 2^n */
1914  bp_hyper_bar =
1915  2, /* Hypercube-embedded tree with min branching
1916  factor 2^n */
1917  bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1918  bp_last_bar /* Placeholder to mark the end */
1919 } kmp_bar_pat_e;
1920 
1921 #define KMP_BARRIER_ICV_PUSH 1
1922 
1923 /* Record for holding the values of the internal controls stack records */
1924 typedef struct kmp_internal_control {
1925  int serial_nesting_level; /* corresponds to the value of the
1926  th_team_serialized field */
1927  kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1928  thread) */
1929  kmp_int8
1930  bt_set; /* internal control for whether blocktime is explicitly set */
1931  int blocktime; /* internal control for blocktime */
1932 #if KMP_USE_MONITOR
1933  int bt_intervals; /* internal control for blocktime intervals */
1934 #endif
1935  int nproc; /* internal control for #threads for next parallel region (per
1936  thread) */
1937  int thread_limit; /* internal control for thread-limit-var */
1938  int max_active_levels; /* internal control for max_active_levels */
1939  kmp_r_sched_t
1940  sched; /* internal control for runtime schedule {sched,chunk} pair */
1941  kmp_proc_bind_t proc_bind; /* internal control for affinity */
1942  kmp_int32 default_device; /* internal control for default device */
1943  struct kmp_internal_control *next;
1944 } kmp_internal_control_t;
1945 
1946 static inline void copy_icvs(kmp_internal_control_t *dst,
1947  kmp_internal_control_t *src) {
1948  *dst = *src;
1949 }
1950 
1951 /* Thread barrier needs volatile barrier fields */
1952 typedef struct KMP_ALIGN_CACHE kmp_bstate {
1953  // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
1954  // uses of it). It is not explicitly aligned below, because we *don't* want
1955  // it to be padded -- instead, we fit b_go into the same cache line with
1956  // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
1957  kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
1958  // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
1959  // same NGO store
1960  volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
1961  KMP_ALIGN_CACHE volatile kmp_uint64
1962  b_arrived; // STATE => task reached synch point.
1963  kmp_uint32 *skip_per_level;
1964  kmp_uint32 my_level;
1965  kmp_int32 parent_tid;
1966  kmp_int32 old_tid;
1967  kmp_uint32 depth;
1968  struct kmp_bstate *parent_bar;
1969  kmp_team_t *team;
1970  kmp_uint64 leaf_state;
1971  kmp_uint32 nproc;
1972  kmp_uint8 base_leaf_kids;
1973  kmp_uint8 leaf_kids;
1974  kmp_uint8 offset;
1975  kmp_uint8 wait_flag;
1976  kmp_uint8 use_oncore_barrier;
1977 #if USE_DEBUGGER
1978  // The following field is intended for the debugger solely. Only the worker
1979  // thread itself accesses this field: the worker increases it by 1 when it
1980  // arrives to a barrier.
1981  KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
1982 #endif /* USE_DEBUGGER */
1983 } kmp_bstate_t;
1984 
1985 union KMP_ALIGN_CACHE kmp_barrier_union {
1986  double b_align; /* use worst case alignment */
1987  char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
1988  kmp_bstate_t bb;
1989 };
1990 
1991 typedef union kmp_barrier_union kmp_balign_t;
1992 
1993 /* Team barrier needs only non-volatile arrived counter */
1994 union KMP_ALIGN_CACHE kmp_barrier_team_union {
1995  double b_align; /* use worst case alignment */
1996  char b_pad[CACHE_LINE];
1997  struct {
1998  kmp_uint64 b_arrived; /* STATE => task reached synch point. */
1999 #if USE_DEBUGGER
2000  // The following two fields are indended for the debugger solely. Only
2001  // master of the team accesses these fields: the first one is increased by
2002  // 1 when master arrives to a barrier, the second one is increased by one
2003  // when all the threads arrived.
2004  kmp_uint b_master_arrived;
2005  kmp_uint b_team_arrived;
2006 #endif
2007  };
2008 };
2009 
2010 typedef union kmp_barrier_team_union kmp_balign_team_t;
2011 
2012 /* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2013  threads when a condition changes. This is to workaround an NPTL bug where
2014  padding was added to pthread_cond_t which caused the initialization routine
2015  to write outside of the structure if compiled on pre-NPTL threads. */
2016 #if KMP_OS_WINDOWS
2017 typedef struct kmp_win32_mutex {
2018  /* The Lock */
2019  CRITICAL_SECTION cs;
2020 } kmp_win32_mutex_t;
2021 
2022 typedef struct kmp_win32_cond {
2023  /* Count of the number of waiters. */
2024  int waiters_count_;
2025 
2026  /* Serialize access to <waiters_count_> */
2027  kmp_win32_mutex_t waiters_count_lock_;
2028 
2029  /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2030  int release_count_;
2031 
2032  /* Keeps track of the current "generation" so that we don't allow */
2033  /* one thread to steal all the "releases" from the broadcast. */
2034  int wait_generation_count_;
2035 
2036  /* A manual-reset event that's used to block and release waiting threads. */
2037  HANDLE event_;
2038 } kmp_win32_cond_t;
2039 #endif
2040 
2041 #if KMP_OS_UNIX
2042 
2043 union KMP_ALIGN_CACHE kmp_cond_union {
2044  double c_align;
2045  char c_pad[CACHE_LINE];
2046  pthread_cond_t c_cond;
2047 };
2048 
2049 typedef union kmp_cond_union kmp_cond_align_t;
2050 
2051 union KMP_ALIGN_CACHE kmp_mutex_union {
2052  double m_align;
2053  char m_pad[CACHE_LINE];
2054  pthread_mutex_t m_mutex;
2055 };
2056 
2057 typedef union kmp_mutex_union kmp_mutex_align_t;
2058 
2059 #endif /* KMP_OS_UNIX */
2060 
2061 typedef struct kmp_desc_base {
2062  void *ds_stackbase;
2063  size_t ds_stacksize;
2064  int ds_stackgrow;
2065  kmp_thread_t ds_thread;
2066  volatile int ds_tid;
2067  int ds_gtid;
2068 #if KMP_OS_WINDOWS
2069  volatile int ds_alive;
2070  DWORD ds_thread_id;
2071 /* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2072  However, debugger support (libomp_db) cannot work with handles, because they
2073  uncomparable. For example, debugger requests info about thread with handle h.
2074  h is valid within debugger process, and meaningless within debugee process.
2075  Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2076  within debugee process, but it is a *new* handle which does *not* equal to
2077  any other handle in debugee... The only way to compare handles is convert
2078  them to system-wide ids. GetThreadId() function is available only in
2079  Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2080  on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2081  thread id by call to GetCurrentThreadId() from within the thread and save it
2082  to let libomp_db identify threads. */
2083 #endif /* KMP_OS_WINDOWS */
2084 } kmp_desc_base_t;
2085 
2086 typedef union KMP_ALIGN_CACHE kmp_desc {
2087  double ds_align; /* use worst case alignment */
2088  char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2089  kmp_desc_base_t ds;
2090 } kmp_desc_t;
2091 
2092 typedef struct kmp_local {
2093  volatile int this_construct; /* count of single's encountered by thread */
2094  void *reduce_data;
2095 #if KMP_USE_BGET
2096  void *bget_data;
2097  void *bget_list;
2098 #if !USE_CMP_XCHG_FOR_BGET
2099 #ifdef USE_QUEUING_LOCK_FOR_BGET
2100  kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2101 #else
2102  kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2103 // bootstrap lock so we can use it at library
2104 // shutdown.
2105 #endif /* USE_LOCK_FOR_BGET */
2106 #endif /* ! USE_CMP_XCHG_FOR_BGET */
2107 #endif /* KMP_USE_BGET */
2108 
2109  PACKED_REDUCTION_METHOD_T
2110  packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2111  __kmpc_end_reduce*() */
2112 
2113 } kmp_local_t;
2114 
2115 #define KMP_CHECK_UPDATE(a, b) \
2116  if ((a) != (b)) \
2117  (a) = (b)
2118 #define KMP_CHECK_UPDATE_SYNC(a, b) \
2119  if ((a) != (b)) \
2120  TCW_SYNC_PTR((a), (b))
2121 
2122 #define get__blocktime(xteam, xtid) \
2123  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2124 #define get__bt_set(xteam, xtid) \
2125  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2126 #if KMP_USE_MONITOR
2127 #define get__bt_intervals(xteam, xtid) \
2128  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2129 #endif
2130 
2131 #define get__dynamic_2(xteam, xtid) \
2132  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2133 #define get__nproc_2(xteam, xtid) \
2134  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2135 #define get__sched_2(xteam, xtid) \
2136  ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2137 
2138 #define set__blocktime_team(xteam, xtid, xval) \
2139  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2140  (xval))
2141 
2142 #if KMP_USE_MONITOR
2143 #define set__bt_intervals_team(xteam, xtid, xval) \
2144  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2145  (xval))
2146 #endif
2147 
2148 #define set__bt_set_team(xteam, xtid, xval) \
2149  (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2150 
2151 #define set__dynamic(xthread, xval) \
2152  (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2153 #define get__dynamic(xthread) \
2154  (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2155 
2156 #define set__nproc(xthread, xval) \
2157  (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2158 
2159 #define set__thread_limit(xthread, xval) \
2160  (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2161 
2162 #define set__max_active_levels(xthread, xval) \
2163  (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2164 
2165 #define get__max_active_levels(xthread) \
2166  ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2167 
2168 #define set__sched(xthread, xval) \
2169  (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2170 
2171 #define set__proc_bind(xthread, xval) \
2172  (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2173 #define get__proc_bind(xthread) \
2174  ((xthread)->th.th_current_task->td_icvs.proc_bind)
2175 
2176 // OpenMP tasking data structures
2177 
2178 typedef enum kmp_tasking_mode {
2179  tskm_immediate_exec = 0,
2180  tskm_extra_barrier = 1,
2181  tskm_task_teams = 2,
2182  tskm_max = 2
2183 } kmp_tasking_mode_t;
2184 
2185 extern kmp_tasking_mode_t
2186  __kmp_tasking_mode; /* determines how/when to execute tasks */
2187 extern int __kmp_task_stealing_constraint;
2188 extern int __kmp_enable_task_throttling;
2189 extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2190 // specified, defaults to 0 otherwise
2191 // Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2192 extern kmp_int32 __kmp_max_task_priority;
2193 // Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2194 extern kmp_uint64 __kmp_taskloop_min_tasks;
2195 
2196 /* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2197  taskdata first */
2198 #define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2199 #define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2200 
2201 // The tt_found_tasks flag is a signal to all threads in the team that tasks
2202 // were spawned and queued since the previous barrier release.
2203 #define KMP_TASKING_ENABLED(task_team) \
2204  (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2212 typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2213 
2214 typedef union kmp_cmplrdata {
2215  kmp_int32 priority;
2216  kmp_routine_entry_t
2217  destructors; /* pointer to function to invoke deconstructors of
2218  firstprivate C++ objects */
2219  /* future data */
2220 } kmp_cmplrdata_t;
2221 
2222 /* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2225 typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2226  void *shareds;
2227  kmp_routine_entry_t
2228  routine;
2229  kmp_int32 part_id;
2230  kmp_cmplrdata_t
2231  data1; /* Two known optional additions: destructors and priority */
2232  kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2233  /* future data */
2234  /* private vars */
2235 } kmp_task_t;
2236 
2241 typedef struct kmp_taskgroup {
2242  std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2243  std::atomic<kmp_int32>
2244  cancel_request; // request for cancellation of this taskgroup
2245  struct kmp_taskgroup *parent; // parent taskgroup
2246  // Block of data to perform task reduction
2247  void *reduce_data; // reduction related info
2248  kmp_int32 reduce_num_data; // number of data items to reduce
2249 } kmp_taskgroup_t;
2250 
2251 // forward declarations
2252 typedef union kmp_depnode kmp_depnode_t;
2253 typedef struct kmp_depnode_list kmp_depnode_list_t;
2254 typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2255 
2256 // Compiler sends us this info:
2257 typedef struct kmp_depend_info {
2258  kmp_intptr_t base_addr;
2259  size_t len;
2260  struct {
2261  bool in : 1;
2262  bool out : 1;
2263  bool mtx : 1;
2264  } flags;
2265 } kmp_depend_info_t;
2266 
2267 // Internal structures to work with task dependencies:
2268 struct kmp_depnode_list {
2269  kmp_depnode_t *node;
2270  kmp_depnode_list_t *next;
2271 };
2272 
2273 // Max number of mutexinoutset dependencies per node
2274 #define MAX_MTX_DEPS 4
2275 
2276 typedef struct kmp_base_depnode {
2277  kmp_depnode_list_t *successors; /* used under lock */
2278  kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2279  kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2280  kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2281  kmp_lock_t lock; /* guards shared fields: task, successors */
2282 #if KMP_SUPPORT_GRAPH_OUTPUT
2283  kmp_uint32 id;
2284 #endif
2285  std::atomic<kmp_int32> npredecessors;
2286  std::atomic<kmp_int32> nrefs;
2287 } kmp_base_depnode_t;
2288 
2289 union KMP_ALIGN_CACHE kmp_depnode {
2290  double dn_align; /* use worst case alignment */
2291  char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2292  kmp_base_depnode_t dn;
2293 };
2294 
2295 struct kmp_dephash_entry {
2296  kmp_intptr_t addr;
2297  kmp_depnode_t *last_out;
2298  kmp_depnode_list_t *last_ins;
2299  kmp_depnode_list_t *last_mtxs;
2300  kmp_int32 last_flag;
2301  kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2302  kmp_dephash_entry_t *next_in_bucket;
2303 };
2304 
2305 typedef struct kmp_dephash {
2306  kmp_dephash_entry_t **buckets;
2307  size_t size;
2308  size_t generation;
2309  kmp_uint32 nelements;
2310  kmp_uint32 nconflicts;
2311 } kmp_dephash_t;
2312 
2313 typedef struct kmp_task_affinity_info {
2314  kmp_intptr_t base_addr;
2315  size_t len;
2316  struct {
2317  bool flag1 : 1;
2318  bool flag2 : 1;
2319  kmp_int32 reserved : 30;
2320  } flags;
2321 } kmp_task_affinity_info_t;
2322 
2323 typedef enum kmp_event_type_t {
2324  KMP_EVENT_UNINITIALIZED = 0,
2325  KMP_EVENT_ALLOW_COMPLETION = 1
2326 } kmp_event_type_t;
2327 
2328 typedef struct {
2329  kmp_event_type_t type;
2330  kmp_tas_lock_t lock;
2331  union {
2332  kmp_task_t *task;
2333  } ed;
2334 } kmp_event_t;
2335 
2336 #ifdef BUILD_TIED_TASK_STACK
2337 
2338 /* Tied Task stack definitions */
2339 typedef struct kmp_stack_block {
2340  kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2341  struct kmp_stack_block *sb_next;
2342  struct kmp_stack_block *sb_prev;
2343 } kmp_stack_block_t;
2344 
2345 typedef struct kmp_task_stack {
2346  kmp_stack_block_t ts_first_block; // first block of stack entries
2347  kmp_taskdata_t **ts_top; // pointer to the top of stack
2348  kmp_int32 ts_entries; // number of entries on the stack
2349 } kmp_task_stack_t;
2350 
2351 #endif // BUILD_TIED_TASK_STACK
2352 
2353 typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2354  /* Compiler flags */ /* Total compiler flags must be 16 bits */
2355  unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2356  unsigned final : 1; /* task is final(1) so execute immediately */
2357  unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2358  code path */
2359  unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2360  invoke destructors from the runtime */
2361  unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2362  context of the RTL) */
2363  unsigned priority_specified : 1; /* set if the compiler provides priority
2364  setting for the task */
2365  unsigned detachable : 1; /* 1 == can detach */
2366  unsigned hidden_helper : 1; /* 1 == hidden helper task */
2367  unsigned reserved : 8; /* reserved for compiler use */
2368 
2369  /* Library flags */ /* Total library flags must be 16 bits */
2370  unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2371  unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2372  unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2373  // (1) or may be deferred (0)
2374  unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2375  // (0) [>= 2 threads]
2376  /* If either team_serial or tasking_ser is set, task team may be NULL */
2377  /* Task State Flags: */
2378  unsigned started : 1; /* 1==started, 0==not started */
2379  unsigned executing : 1; /* 1==executing, 0==not executing */
2380  unsigned complete : 1; /* 1==complete, 0==not complete */
2381  unsigned freed : 1; /* 1==freed, 0==allocated */
2382  unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2383  unsigned reserved31 : 7; /* reserved for library use */
2384 
2385 } kmp_tasking_flags_t;
2386 
2387 struct kmp_taskdata { /* aligned during dynamic allocation */
2388  kmp_int32 td_task_id; /* id, assigned by debugger */
2389  kmp_tasking_flags_t td_flags; /* task flags */
2390  kmp_team_t *td_team; /* team for this task */
2391  kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2392  /* Currently not used except for perhaps IDB */
2393  kmp_taskdata_t *td_parent; /* parent task */
2394  kmp_int32 td_level; /* task nesting level */
2395  std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2396  ident_t *td_ident; /* task identifier */
2397  // Taskwait data.
2398  ident_t *td_taskwait_ident;
2399  kmp_uint32 td_taskwait_counter;
2400  kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2401  KMP_ALIGN_CACHE kmp_internal_control_t
2402  td_icvs; /* Internal control variables for the task */
2403  KMP_ALIGN_CACHE std::atomic<kmp_int32>
2404  td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2405  deallocated */
2406  std::atomic<kmp_int32>
2407  td_incomplete_child_tasks; /* Child tasks not yet complete */
2408  kmp_taskgroup_t
2409  *td_taskgroup; // Each task keeps pointer to its current taskgroup
2410  kmp_dephash_t
2411  *td_dephash; // Dependencies for children tasks are tracked from here
2412  kmp_depnode_t
2413  *td_depnode; // Pointer to graph node if this task has dependencies
2414  kmp_task_team_t *td_task_team;
2415  // The global thread id of the encountering thread. We need it because when a
2416  // regular task depends on a hidden helper task, and the hidden helper task
2417  // is finished on a hidden helper thread, it will call __kmp_release_deps to
2418  // release all dependences. If now the task is a regular task, we need to pass
2419  // the encountering gtid such that the task will be picked up and executed by
2420  // its encountering team instead of hidden helper team.
2421  kmp_int32 encountering_gtid;
2422  size_t td_size_alloc; // Size of task structure, including shareds etc.
2423 #if defined(KMP_GOMP_COMPAT)
2424  // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2425  kmp_int32 td_size_loop_bounds;
2426 #endif
2427  kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2428 #if defined(KMP_GOMP_COMPAT)
2429  // GOMP sends in a copy function for copy constructors
2430  void (*td_copy_func)(void *, void *);
2431 #endif
2432  kmp_event_t td_allow_completion_event;
2433 #if OMPT_SUPPORT
2434  ompt_task_info_t ompt_task_info;
2435 #endif
2436 }; // struct kmp_taskdata
2437 
2438 // Make sure padding above worked
2439 KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2440 
2441 // Data for task team but per thread
2442 typedef struct kmp_base_thread_data {
2443  kmp_info_p *td_thr; // Pointer back to thread info
2444  // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2445  // queued?
2446  kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2447  kmp_taskdata_t *
2448  *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2449  kmp_int32 td_deque_size; // Size of deck
2450  kmp_uint32 td_deque_head; // Head of deque (will wrap)
2451  kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2452  kmp_int32 td_deque_ntasks; // Number of tasks in deque
2453  // GEH: shouldn't this be volatile since used in while-spin?
2454  kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2455 #ifdef BUILD_TIED_TASK_STACK
2456  kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2457 // scheduling constraint
2458 #endif // BUILD_TIED_TASK_STACK
2459 } kmp_base_thread_data_t;
2460 
2461 #define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2462 #define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2463 
2464 #define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2465 #define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2466 
2467 typedef union KMP_ALIGN_CACHE kmp_thread_data {
2468  kmp_base_thread_data_t td;
2469  double td_align; /* use worst case alignment */
2470  char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2471 } kmp_thread_data_t;
2472 
2473 // Data for task teams which are used when tasking is enabled for the team
2474 typedef struct kmp_base_task_team {
2475  kmp_bootstrap_lock_t
2476  tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2477  /* must be bootstrap lock since used at library shutdown*/
2478  kmp_task_team_t *tt_next; /* For linking the task team free list */
2479  kmp_thread_data_t
2480  *tt_threads_data; /* Array of per-thread structures for task team */
2481  /* Data survives task team deallocation */
2482  kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2483  executing this team? */
2484  /* TRUE means tt_threads_data is set up and initialized */
2485  kmp_int32 tt_nproc; /* #threads in team */
2486  kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2487  kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2488  kmp_int32 tt_untied_task_encountered;
2489  // There is hidden helper thread encountered in this task team so that we must
2490  // wait when waiting on task team
2491  kmp_int32 tt_hidden_helper_task_encountered;
2492 
2493  KMP_ALIGN_CACHE
2494  std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2495 
2496  KMP_ALIGN_CACHE
2497  volatile kmp_uint32
2498  tt_active; /* is the team still actively executing tasks */
2499 } kmp_base_task_team_t;
2500 
2501 union KMP_ALIGN_CACHE kmp_task_team {
2502  kmp_base_task_team_t tt;
2503  double tt_align; /* use worst case alignment */
2504  char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2505 };
2506 
2507 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2508 // Free lists keep same-size free memory slots for fast memory allocation
2509 // routines
2510 typedef struct kmp_free_list {
2511  void *th_free_list_self; // Self-allocated tasks free list
2512  void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2513  // threads
2514  void *th_free_list_other; // Non-self free list (to be returned to owner's
2515  // sync list)
2516 } kmp_free_list_t;
2517 #endif
2518 #if KMP_NESTED_HOT_TEAMS
2519 // Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2520 // are not put in teams pool, and they don't put threads in threads pool.
2521 typedef struct kmp_hot_team_ptr {
2522  kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2523  kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2524 } kmp_hot_team_ptr_t;
2525 #endif
2526 typedef struct kmp_teams_size {
2527  kmp_int32 nteams; // number of teams in a league
2528  kmp_int32 nth; // number of threads in each team of the league
2529 } kmp_teams_size_t;
2530 
2531 // This struct stores a thread that acts as a "root" for a contention
2532 // group. Contention groups are rooted at kmp_root threads, but also at
2533 // each master thread of each team created in the teams construct.
2534 // This struct therefore also stores a thread_limit associated with
2535 // that contention group, and a counter to track the number of threads
2536 // active in that contention group. Each thread has a list of these: CG
2537 // root threads have an entry in their list in which cg_root refers to
2538 // the thread itself, whereas other workers in the CG will have a
2539 // single entry where cg_root is same as the entry containing their CG
2540 // root. When a thread encounters a teams construct, it will add a new
2541 // entry to the front of its list, because it now roots a new CG.
2542 typedef struct kmp_cg_root {
2543  kmp_info_p *cg_root; // "root" thread for a contention group
2544  // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2545  // thread_limit clause for teams masters
2546  kmp_int32 cg_thread_limit;
2547  kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2548  struct kmp_cg_root *up; // pointer to higher level CG root in list
2549 } kmp_cg_root_t;
2550 
2551 // OpenMP thread data structures
2552 
2553 typedef struct KMP_ALIGN_CACHE kmp_base_info {
2554  /* Start with the readonly data which is cache aligned and padded. This is
2555  written before the thread starts working by the master. Uber masters may
2556  update themselves later. Usage does not consider serialized regions. */
2557  kmp_desc_t th_info;
2558  kmp_team_p *th_team; /* team we belong to */
2559  kmp_root_p *th_root; /* pointer to root of task hierarchy */
2560  kmp_info_p *th_next_pool; /* next available thread in the pool */
2561  kmp_disp_t *th_dispatch; /* thread's dispatch data */
2562  int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2563 
2564  /* The following are cached from the team info structure */
2565  /* TODO use these in more places as determined to be needed via profiling */
2566  int th_team_nproc; /* number of threads in a team */
2567  kmp_info_p *th_team_master; /* the team's master thread */
2568  int th_team_serialized; /* team is serialized */
2569  microtask_t th_teams_microtask; /* save entry address for teams construct */
2570  int th_teams_level; /* save initial level of teams construct */
2571 /* it is 0 on device but may be any on host */
2572 
2573 /* The blocktime info is copied from the team struct to the thread struct */
2574 /* at the start of a barrier, and the values stored in the team are used */
2575 /* at points in the code where the team struct is no longer guaranteed */
2576 /* to exist (from the POV of worker threads). */
2577 #if KMP_USE_MONITOR
2578  int th_team_bt_intervals;
2579  int th_team_bt_set;
2580 #else
2581  kmp_uint64 th_team_bt_intervals;
2582 #endif
2583 
2584 #if KMP_AFFINITY_SUPPORTED
2585  kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2586 #endif
2587  omp_allocator_handle_t th_def_allocator; /* default allocator */
2588  /* The data set by the master at reinit, then R/W by the worker */
2589  KMP_ALIGN_CACHE int
2590  th_set_nproc; /* if > 0, then only use this request for the next fork */
2591 #if KMP_NESTED_HOT_TEAMS
2592  kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2593 #endif
2594  kmp_proc_bind_t
2595  th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2596  kmp_teams_size_t
2597  th_teams_size; /* number of teams/threads in teams construct */
2598 #if KMP_AFFINITY_SUPPORTED
2599  int th_current_place; /* place currently bound to */
2600  int th_new_place; /* place to bind to in par reg */
2601  int th_first_place; /* first place in partition */
2602  int th_last_place; /* last place in partition */
2603 #endif
2604  int th_prev_level; /* previous level for affinity format */
2605  int th_prev_num_threads; /* previous num_threads for affinity format */
2606 #if USE_ITT_BUILD
2607  kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2608  kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2609  kmp_uint64 th_frame_time; /* frame timestamp */
2610 #endif /* USE_ITT_BUILD */
2611  kmp_local_t th_local;
2612  struct private_common *th_pri_head;
2613 
2614  /* Now the data only used by the worker (after initial allocation) */
2615  /* TODO the first serial team should actually be stored in the info_t
2616  structure. this will help reduce initial allocation overhead */
2617  KMP_ALIGN_CACHE kmp_team_p
2618  *th_serial_team; /*serialized team held in reserve*/
2619 
2620 #if OMPT_SUPPORT
2621  ompt_thread_info_t ompt_thread_info;
2622 #endif
2623 
2624  /* The following are also read by the master during reinit */
2625  struct common_table *th_pri_common;
2626 
2627  volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2628  /* while awaiting queuing lock acquire */
2629 
2630  volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2631 
2632  ident_t *th_ident;
2633  unsigned th_x; // Random number generator data
2634  unsigned th_a; // Random number generator data
2635 
2636  /* Tasking-related data for the thread */
2637  kmp_task_team_t *th_task_team; // Task team struct
2638  kmp_taskdata_t *th_current_task; // Innermost Task being executed
2639  kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2640  kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2641  // at nested levels
2642  kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2643  kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2644  kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2645  // tasking, thus safe to reap
2646 
2647  /* More stuff for keeping track of active/sleeping threads (this part is
2648  written by the worker thread) */
2649  kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2650  int th_active; // ! sleeping; 32 bits for TCR/TCW
2651  struct cons_header *th_cons; // used for consistency check
2652 #if KMP_USE_HIER_SCHED
2653  // used for hierarchical scheduling
2654  kmp_hier_private_bdata_t *th_hier_bar_data;
2655 #endif
2656 
2657  /* Add the syncronizing data which is cache aligned and padded. */
2658  KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2659 
2660  KMP_ALIGN_CACHE volatile kmp_int32
2661  th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2662 
2663 #if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2664 #define NUM_LISTS 4
2665  kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2666 // allocation routines
2667 #endif
2668 
2669 #if KMP_OS_WINDOWS
2670  kmp_win32_cond_t th_suspend_cv;
2671  kmp_win32_mutex_t th_suspend_mx;
2672  std::atomic<int> th_suspend_init;
2673 #endif
2674 #if KMP_OS_UNIX
2675  kmp_cond_align_t th_suspend_cv;
2676  kmp_mutex_align_t th_suspend_mx;
2677  std::atomic<int> th_suspend_init_count;
2678 #endif
2679 
2680 #if USE_ITT_BUILD
2681  kmp_itt_mark_t th_itt_mark_single;
2682 // alignment ???
2683 #endif /* USE_ITT_BUILD */
2684 #if KMP_STATS_ENABLED
2685  kmp_stats_list *th_stats;
2686 #endif
2687 #if KMP_OS_UNIX
2688  std::atomic<bool> th_blocking;
2689 #endif
2690  kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2691 } kmp_base_info_t;
2692 
2693 typedef union KMP_ALIGN_CACHE kmp_info {
2694  double th_align; /* use worst case alignment */
2695  char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2696  kmp_base_info_t th;
2697 } kmp_info_t;
2698 
2699 // OpenMP thread team data structures
2700 
2701 typedef struct kmp_base_data { volatile kmp_uint32 t_value; } kmp_base_data_t;
2702 
2703 typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2704  double dt_align; /* use worst case alignment */
2705  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2706  kmp_base_data_t dt;
2707 } kmp_sleep_team_t;
2708 
2709 typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2710  double dt_align; /* use worst case alignment */
2711  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2712  kmp_base_data_t dt;
2713 } kmp_ordered_team_t;
2714 
2715 typedef int (*launch_t)(int gtid);
2716 
2717 /* Minimum number of ARGV entries to malloc if necessary */
2718 #define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2719 
2720 // Set up how many argv pointers will fit in cache lines containing
2721 // t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2722 // larger value for more space between the master write/worker read section and
2723 // read/write by all section seems to buy more performance on EPCC PARALLEL.
2724 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2725 #define KMP_INLINE_ARGV_BYTES \
2726  (4 * CACHE_LINE - \
2727  ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2728  sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2729  CACHE_LINE))
2730 #else
2731 #define KMP_INLINE_ARGV_BYTES \
2732  (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2733 #endif
2734 #define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2735 
2736 typedef struct KMP_ALIGN_CACHE kmp_base_team {
2737  // Synchronization Data
2738  // ---------------------------------------------------------------------------
2739  KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2740  kmp_balign_team_t t_bar[bs_last_barrier];
2741  std::atomic<int> t_construct; // count of single directive encountered by team
2742  char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2743 
2744  // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2745  std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2746  std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2747 
2748  // Master only
2749  // ---------------------------------------------------------------------------
2750  KMP_ALIGN_CACHE int t_master_tid; // tid of master in parent team
2751  int t_master_this_cons; // "this_construct" single counter of master in parent
2752  // team
2753  ident_t *t_ident; // if volatile, have to change too much other crud to
2754  // volatile too
2755  kmp_team_p *t_parent; // parent team
2756  kmp_team_p *t_next_pool; // next free team in the team pool
2757  kmp_disp_t *t_dispatch; // thread's dispatch data
2758  kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2759  kmp_proc_bind_t t_proc_bind; // bind type for par region
2760 #if USE_ITT_BUILD
2761  kmp_uint64 t_region_time; // region begin timestamp
2762 #endif /* USE_ITT_BUILD */
2763 
2764  // Master write, workers read
2765  // --------------------------------------------------------------------------
2766  KMP_ALIGN_CACHE void **t_argv;
2767  int t_argc;
2768  int t_nproc; // number of threads in team
2769  microtask_t t_pkfn;
2770  launch_t t_invoke; // procedure to launch the microtask
2771 
2772 #if OMPT_SUPPORT
2773  ompt_team_info_t ompt_team_info;
2774  ompt_lw_taskteam_t *ompt_serialized_team_info;
2775 #endif
2776 
2777 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2778  kmp_int8 t_fp_control_saved;
2779  kmp_int8 t_pad2b;
2780  kmp_int16 t_x87_fpu_control_word; // FP control regs
2781  kmp_uint32 t_mxcsr;
2782 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2783 
2784  void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2785 
2786  KMP_ALIGN_CACHE kmp_info_t **t_threads;
2787  kmp_taskdata_t
2788  *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2789  int t_level; // nested parallel level
2790 
2791  KMP_ALIGN_CACHE int t_max_argc;
2792  int t_max_nproc; // max threads this team can handle (dynamically expandable)
2793  int t_serialized; // levels deep of serialized teams
2794  dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2795  int t_id; // team's id, assigned by debugger.
2796  int t_active_level; // nested active parallel level
2797  kmp_r_sched_t t_sched; // run-time schedule for the team
2798 #if KMP_AFFINITY_SUPPORTED
2799  int t_first_place; // first & last place in parent thread's partition.
2800  int t_last_place; // Restore these values to master after par region.
2801 #endif // KMP_AFFINITY_SUPPORTED
2802  int t_display_affinity;
2803  int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2804  // omp_set_num_threads() call
2805  omp_allocator_handle_t t_def_allocator; /* default allocator */
2806 
2807 // Read/write by workers as well
2808 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2809  // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2810  // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2811  // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2812  // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2813  char dummy_padding[1024];
2814 #endif
2815  // Internal control stack for additional nested teams.
2816  KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2817  // for SERIALIZED teams nested 2 or more levels deep
2818  // typed flag to store request state of cancellation
2819  std::atomic<kmp_int32> t_cancel_request;
2820  int t_master_active; // save on fork, restore on join
2821  void *t_copypriv_data; // team specific pointer to copyprivate data array
2822 #if KMP_OS_WINDOWS
2823  std::atomic<kmp_uint32> t_copyin_counter;
2824 #endif
2825 #if USE_ITT_BUILD
2826  void *t_stack_id; // team specific stack stitching id (for ittnotify)
2827 #endif /* USE_ITT_BUILD */
2828 } kmp_base_team_t;
2829 
2830 union KMP_ALIGN_CACHE kmp_team {
2831  kmp_base_team_t t;
2832  double t_align; /* use worst case alignment */
2833  char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2834 };
2835 
2836 typedef union KMP_ALIGN_CACHE kmp_time_global {
2837  double dt_align; /* use worst case alignment */
2838  char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2839  kmp_base_data_t dt;
2840 } kmp_time_global_t;
2841 
2842 typedef struct kmp_base_global {
2843  /* cache-aligned */
2844  kmp_time_global_t g_time;
2845 
2846  /* non cache-aligned */
2847  volatile int g_abort;
2848  volatile int g_done;
2849 
2850  int g_dynamic;
2851  enum dynamic_mode g_dynamic_mode;
2852 } kmp_base_global_t;
2853 
2854 typedef union KMP_ALIGN_CACHE kmp_global {
2855  kmp_base_global_t g;
2856  double g_align; /* use worst case alignment */
2857  char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2858 } kmp_global_t;
2859 
2860 typedef struct kmp_base_root {
2861  // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2862  // (r_in_parallel>= 0)
2863  // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2864  // the synch overhead or keeping r_active
2865  volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2866  // keeps a count of active parallel regions per root
2867  std::atomic<int> r_in_parallel;
2868  // GEH: This is misnamed, should be r_active_levels
2869  kmp_team_t *r_root_team;
2870  kmp_team_t *r_hot_team;
2871  kmp_info_t *r_uber_thread;
2872  kmp_lock_t r_begin_lock;
2873  volatile int r_begin;
2874  int r_blocktime; /* blocktime for this root and descendants */
2875 } kmp_base_root_t;
2876 
2877 typedef union KMP_ALIGN_CACHE kmp_root {
2878  kmp_base_root_t r;
2879  double r_align; /* use worst case alignment */
2880  char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2881 } kmp_root_t;
2882 
2883 struct fortran_inx_info {
2884  kmp_int32 data;
2885 };
2886 
2887 /* ------------------------------------------------------------------------ */
2888 
2889 extern int __kmp_settings;
2890 extern int __kmp_duplicate_library_ok;
2891 #if USE_ITT_BUILD
2892 extern int __kmp_forkjoin_frames;
2893 extern int __kmp_forkjoin_frames_mode;
2894 #endif
2895 extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2896 extern int __kmp_determ_red;
2897 
2898 #ifdef KMP_DEBUG
2899 extern int kmp_a_debug;
2900 extern int kmp_b_debug;
2901 extern int kmp_c_debug;
2902 extern int kmp_d_debug;
2903 extern int kmp_e_debug;
2904 extern int kmp_f_debug;
2905 #endif /* KMP_DEBUG */
2906 
2907 /* For debug information logging using rotating buffer */
2908 #define KMP_DEBUG_BUF_LINES_INIT 512
2909 #define KMP_DEBUG_BUF_LINES_MIN 1
2910 
2911 #define KMP_DEBUG_BUF_CHARS_INIT 128
2912 #define KMP_DEBUG_BUF_CHARS_MIN 2
2913 
2914 extern int
2915  __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
2916 extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
2917 extern int
2918  __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
2919 extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
2920  entry pointer */
2921 
2922 extern char *__kmp_debug_buffer; /* Debug buffer itself */
2923 extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
2924  printed in buffer so far */
2925 extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
2926  recommended in warnings */
2927 /* end rotating debug buffer */
2928 
2929 #ifdef KMP_DEBUG
2930 extern int __kmp_par_range; /* +1 => only go par for constructs in range */
2931 
2932 #define KMP_PAR_RANGE_ROUTINE_LEN 1024
2933 extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
2934 #define KMP_PAR_RANGE_FILENAME_LEN 1024
2935 extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
2936 extern int __kmp_par_range_lb;
2937 extern int __kmp_par_range_ub;
2938 #endif
2939 
2940 /* For printing out dynamic storage map for threads and teams */
2941 extern int
2942  __kmp_storage_map; /* True means print storage map for threads and teams */
2943 extern int __kmp_storage_map_verbose; /* True means storage map includes
2944  placement info */
2945 extern int __kmp_storage_map_verbose_specified;
2946 
2947 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2948 extern kmp_cpuinfo_t __kmp_cpuinfo;
2949 #endif
2950 
2951 extern volatile int __kmp_init_serial;
2952 extern volatile int __kmp_init_gtid;
2953 extern volatile int __kmp_init_common;
2954 extern volatile int __kmp_init_middle;
2955 extern volatile int __kmp_init_parallel;
2956 #if KMP_USE_MONITOR
2957 extern volatile int __kmp_init_monitor;
2958 #endif
2959 extern volatile int __kmp_init_user_locks;
2960 extern volatile int __kmp_init_hidden_helper_threads;
2961 extern int __kmp_init_counter;
2962 extern int __kmp_root_counter;
2963 extern int __kmp_version;
2964 
2965 /* list of address of allocated caches for commons */
2966 extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
2967 
2968 /* Barrier algorithm types and options */
2969 extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
2970 extern kmp_uint32 __kmp_barrier_release_bb_dflt;
2971 extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
2972 extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
2973 extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
2974 extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
2975 extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
2976 extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
2977 extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
2978 extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
2979 extern char const *__kmp_barrier_type_name[bs_last_barrier];
2980 extern char const *__kmp_barrier_pattern_name[bp_last_bar];
2981 
2982 /* Global Locks */
2983 extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
2984 extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
2985 extern kmp_bootstrap_lock_t __kmp_task_team_lock;
2986 extern kmp_bootstrap_lock_t
2987  __kmp_exit_lock; /* exit() is not always thread-safe */
2988 #if KMP_USE_MONITOR
2989 extern kmp_bootstrap_lock_t
2990  __kmp_monitor_lock; /* control monitor thread creation */
2991 #endif
2992 extern kmp_bootstrap_lock_t
2993  __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
2994  __kmp_threads expansion to co-exist */
2995 
2996 extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
2997 extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
2998 extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
2999 
3000 extern enum library_type __kmp_library;
3001 
3002 extern enum sched_type __kmp_sched; /* default runtime scheduling */
3003 extern enum sched_type __kmp_static; /* default static scheduling method */
3004 extern enum sched_type __kmp_guided; /* default guided scheduling method */
3005 extern enum sched_type __kmp_auto; /* default auto scheduling method */
3006 extern int __kmp_chunk; /* default runtime chunk size */
3007 
3008 extern size_t __kmp_stksize; /* stack size per thread */
3009 #if KMP_USE_MONITOR
3010 extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3011 #endif
3012 extern size_t __kmp_stkoffset; /* stack offset per thread */
3013 extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3014 
3015 extern size_t
3016  __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3017 extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3018 extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3019 extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3020 extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3021 extern int __kmp_generate_warnings; /* should we issue warnings? */
3022 extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3023 
3024 #ifdef DEBUG_SUSPEND
3025 extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3026 #endif
3027 
3028 extern kmp_int32 __kmp_use_yield;
3029 extern kmp_int32 __kmp_use_yield_exp_set;
3030 extern kmp_uint32 __kmp_yield_init;
3031 extern kmp_uint32 __kmp_yield_next;
3032 
3033 /* ------------------------------------------------------------------------- */
3034 extern int __kmp_allThreadsSpecified;
3035 
3036 extern size_t __kmp_align_alloc;
3037 /* following data protected by initialization routines */
3038 extern int __kmp_xproc; /* number of processors in the system */
3039 extern int __kmp_avail_proc; /* number of processors available to the process */
3040 extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3041 extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3042 // maximum total number of concurrently-existing threads on device
3043 extern int __kmp_max_nth;
3044 // maximum total number of concurrently-existing threads in a contention group
3045 extern int __kmp_cg_max_nth;
3046 extern int __kmp_teams_max_nth; // max threads used in a teams construct
3047 extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3048  __kmp_root */
3049 extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3050  region a la OMP_NUM_THREADS */
3051 extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3052  initialization */
3053 extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3054  used (fixed) */
3055 extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3056  (__kmpc_threadprivate_cached()) */
3057 extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3058  blocking (env setting) */
3059 #if KMP_USE_MONITOR
3060 extern int
3061  __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3062 extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3063  blocking */
3064 #endif
3065 #ifdef KMP_ADJUST_BLOCKTIME
3066 extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3067 #endif /* KMP_ADJUST_BLOCKTIME */
3068 #ifdef KMP_DFLT_NTH_CORES
3069 extern int __kmp_ncores; /* Total number of cores for threads placement */
3070 #endif
3071 /* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3072 extern int __kmp_abort_delay;
3073 
3074 extern int __kmp_need_register_atfork_specified;
3075 extern int
3076  __kmp_need_register_atfork; /* At initialization, call pthread_atfork to
3077  install fork handler */
3078 extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3079  0 - not set, will be set at runtime
3080  1 - using stack search
3081  2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3082  X*) or TlsGetValue(Windows* OS))
3083  3 - static TLS (__declspec(thread) __kmp_gtid),
3084  Linux* OS .so only. */
3085 extern int
3086  __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3087 #ifdef KMP_TDATA_GTID
3088 extern KMP_THREAD_LOCAL int __kmp_gtid;
3089 #endif
3090 extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3091 extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3092 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3093 extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3094 extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3095 extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3096 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3097 
3098 // max_active_levels for nested parallelism enabled by default via
3099 // OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3100 extern int __kmp_dflt_max_active_levels;
3101 // Indicates whether value of __kmp_dflt_max_active_levels was already
3102 // explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3103 extern bool __kmp_dflt_max_active_levels_set;
3104 extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3105  concurrent execution per team */
3106 #if KMP_NESTED_HOT_TEAMS
3107 extern int __kmp_hot_teams_mode;
3108 extern int __kmp_hot_teams_max_level;
3109 #endif
3110 
3111 #if KMP_OS_LINUX
3112 extern enum clock_function_type __kmp_clock_function;
3113 extern int __kmp_clock_function_param;
3114 #endif /* KMP_OS_LINUX */
3115 
3116 #if KMP_MIC_SUPPORTED
3117 extern enum mic_type __kmp_mic_type;
3118 #endif
3119 
3120 #ifdef USE_LOAD_BALANCE
3121 extern double __kmp_load_balance_interval; // load balance algorithm interval
3122 #endif /* USE_LOAD_BALANCE */
3123 
3124 // OpenMP 3.1 - Nested num threads array
3125 typedef struct kmp_nested_nthreads_t {
3126  int *nth;
3127  int size;
3128  int used;
3129 } kmp_nested_nthreads_t;
3130 
3131 extern kmp_nested_nthreads_t __kmp_nested_nth;
3132 
3133 #if KMP_USE_ADAPTIVE_LOCKS
3134 
3135 // Parameters for the speculative lock backoff system.
3136 struct kmp_adaptive_backoff_params_t {
3137  // Number of soft retries before it counts as a hard retry.
3138  kmp_uint32 max_soft_retries;
3139  // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3140  // the right
3141  kmp_uint32 max_badness;
3142 };
3143 
3144 extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3145 
3146 #if KMP_DEBUG_ADAPTIVE_LOCKS
3147 extern const char *__kmp_speculative_statsfile;
3148 #endif
3149 
3150 #endif // KMP_USE_ADAPTIVE_LOCKS
3151 
3152 extern int __kmp_display_env; /* TRUE or FALSE */
3153 extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3154 extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3155 
3156 /* ------------------------------------------------------------------------- */
3157 
3158 /* the following are protected by the fork/join lock */
3159 /* write: lock read: anytime */
3160 extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3161 /* read/write: lock */
3162 extern volatile kmp_team_t *__kmp_team_pool;
3163 extern volatile kmp_info_t *__kmp_thread_pool;
3164 extern kmp_info_t *__kmp_thread_pool_insert_pt;
3165 
3166 // total num threads reachable from some root thread including all root threads
3167 extern volatile int __kmp_nth;
3168 /* total number of threads reachable from some root thread including all root
3169  threads, and those in the thread pool */
3170 extern volatile int __kmp_all_nth;
3171 extern std::atomic<int> __kmp_thread_pool_active_nth;
3172 
3173 extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3174 /* end data protected by fork/join lock */
3175 /* ------------------------------------------------------------------------- */
3176 
3177 #define __kmp_get_gtid() __kmp_get_global_thread_id()
3178 #define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3179 #define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3180 #define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3181 #define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3182 
3183 // AT: Which way is correct?
3184 // AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3185 // AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3186 #define __kmp_get_team_num_threads(gtid) \
3187  (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3188 
3189 static inline bool KMP_UBER_GTID(int gtid) {
3190  KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3191  KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3192  return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3193  __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3194 }
3195 
3196 static inline int __kmp_tid_from_gtid(int gtid) {
3197  KMP_DEBUG_ASSERT(gtid >= 0);
3198  return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3199 }
3200 
3201 static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3202  KMP_DEBUG_ASSERT(tid >= 0 && team);
3203  return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3204 }
3205 
3206 static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3207  KMP_DEBUG_ASSERT(thr);
3208  return thr->th.th_info.ds.ds_gtid;
3209 }
3210 
3211 static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3212  KMP_DEBUG_ASSERT(gtid >= 0);
3213  return __kmp_threads[gtid];
3214 }
3215 
3216 static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3217  KMP_DEBUG_ASSERT(gtid >= 0);
3218  return __kmp_threads[gtid]->th.th_team;
3219 }
3220 
3221 static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3222  if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3223  KMP_FATAL(ThreadIdentInvalid);
3224 }
3225 
3226 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3227 extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3228 extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3229 extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3230 extern int __kmp_mwait_hints; // Hints to pass in to mwait
3231 #endif
3232 
3233 /* ------------------------------------------------------------------------- */
3234 
3235 extern kmp_global_t __kmp_global; /* global status */
3236 
3237 extern kmp_info_t __kmp_monitor;
3238 // For Debugging Support Library
3239 extern std::atomic<kmp_int32> __kmp_team_counter;
3240 // For Debugging Support Library
3241 extern std::atomic<kmp_int32> __kmp_task_counter;
3242 
3243 #if USE_DEBUGGER
3244 #define _KMP_GEN_ID(counter) \
3245  (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3246 #else
3247 #define _KMP_GEN_ID(counter) (~0)
3248 #endif /* USE_DEBUGGER */
3249 
3250 #define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3251 #define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3252 
3253 /* ------------------------------------------------------------------------ */
3254 
3255 extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3256  size_t size, char const *format, ...);
3257 
3258 extern void __kmp_serial_initialize(void);
3259 extern void __kmp_middle_initialize(void);
3260 extern void __kmp_parallel_initialize(void);
3261 
3262 extern void __kmp_internal_begin(void);
3263 extern void __kmp_internal_end_library(int gtid);
3264 extern void __kmp_internal_end_thread(int gtid);
3265 extern void __kmp_internal_end_atexit(void);
3266 extern void __kmp_internal_end_dtor(void);
3267 extern void __kmp_internal_end_dest(void *);
3268 
3269 extern int __kmp_register_root(int initial_thread);
3270 extern void __kmp_unregister_root(int gtid);
3271 extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3272 
3273 extern int __kmp_ignore_mppbeg(void);
3274 extern int __kmp_ignore_mppend(void);
3275 
3276 extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3277 extern void __kmp_exit_single(int gtid);
3278 
3279 extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3280 extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3281 
3282 #ifdef USE_LOAD_BALANCE
3283 extern int __kmp_get_load_balance(int);
3284 #endif
3285 
3286 extern int __kmp_get_global_thread_id(void);
3287 extern int __kmp_get_global_thread_id_reg(void);
3288 extern void __kmp_exit_thread(int exit_status);
3289 extern void __kmp_abort(char const *format, ...);
3290 extern void __kmp_abort_thread(void);
3291 KMP_NORETURN extern void __kmp_abort_process(void);
3292 extern void __kmp_warn(char const *format, ...);
3293 
3294 extern void __kmp_set_num_threads(int new_nth, int gtid);
3295 
3296 // Returns current thread (pointer to kmp_info_t). Current thread *must* be
3297 // registered.
3298 static inline kmp_info_t *__kmp_entry_thread() {
3299  int gtid = __kmp_entry_gtid();
3300 
3301  return __kmp_threads[gtid];
3302 }
3303 
3304 extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3305 extern int __kmp_get_max_active_levels(int gtid);
3306 extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3307 extern int __kmp_get_team_size(int gtid, int level);
3308 extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3309 extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3310 
3311 extern unsigned short __kmp_get_random(kmp_info_t *thread);
3312 extern void __kmp_init_random(kmp_info_t *thread);
3313 
3314 extern kmp_r_sched_t __kmp_get_schedule_global(void);
3315 extern void __kmp_adjust_num_threads(int new_nproc);
3316 extern void __kmp_check_stksize(size_t *val);
3317 
3318 extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3319 extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3320 extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3321 #define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3322 #define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3323 #define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3324 
3325 #if USE_FAST_MEMORY
3326 extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3327  size_t size KMP_SRC_LOC_DECL);
3328 extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3329 extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3330 extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3331 #define __kmp_fast_allocate(this_thr, size) \
3332  ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3333 #define __kmp_fast_free(this_thr, ptr) \
3334  ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3335 #endif
3336 
3337 extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3338 extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3339  size_t elsize KMP_SRC_LOC_DECL);
3340 extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3341  size_t size KMP_SRC_LOC_DECL);
3342 extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3343 #define __kmp_thread_malloc(th, size) \
3344  ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3345 #define __kmp_thread_calloc(th, nelem, elsize) \
3346  ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3347 #define __kmp_thread_realloc(th, ptr, size) \
3348  ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3349 #define __kmp_thread_free(th, ptr) \
3350  ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3351 
3352 #define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3353 #define KMP_INTERNAL_FREE(p) free(p)
3354 #define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3355 #define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3356 
3357 extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3358 
3359 extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3360  kmp_proc_bind_t proc_bind);
3361 extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3362  int num_threads);
3363 
3364 extern void __kmp_yield();
3365 
3366 extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3367  enum sched_type schedule, kmp_int32 lb,
3368  kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3369 extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3370  enum sched_type schedule, kmp_uint32 lb,
3371  kmp_uint32 ub, kmp_int32 st,
3372  kmp_int32 chunk);
3373 extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3374  enum sched_type schedule, kmp_int64 lb,
3375  kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3376 extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3377  enum sched_type schedule, kmp_uint64 lb,
3378  kmp_uint64 ub, kmp_int64 st,
3379  kmp_int64 chunk);
3380 
3381 extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3382  kmp_int32 *p_last, kmp_int32 *p_lb,
3383  kmp_int32 *p_ub, kmp_int32 *p_st);
3384 extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3385  kmp_int32 *p_last, kmp_uint32 *p_lb,
3386  kmp_uint32 *p_ub, kmp_int32 *p_st);
3387 extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3388  kmp_int32 *p_last, kmp_int64 *p_lb,
3389  kmp_int64 *p_ub, kmp_int64 *p_st);
3390 extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3391  kmp_int32 *p_last, kmp_uint64 *p_lb,
3392  kmp_uint64 *p_ub, kmp_int64 *p_st);
3393 
3394 extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3395 extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3396 extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3397 extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3398 
3399 #ifdef KMP_GOMP_COMPAT
3400 
3401 extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3402  enum sched_type schedule, kmp_int32 lb,
3403  kmp_int32 ub, kmp_int32 st,
3404  kmp_int32 chunk, int push_ws);
3405 extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3406  enum sched_type schedule, kmp_uint32 lb,
3407  kmp_uint32 ub, kmp_int32 st,
3408  kmp_int32 chunk, int push_ws);
3409 extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3410  enum sched_type schedule, kmp_int64 lb,
3411  kmp_int64 ub, kmp_int64 st,
3412  kmp_int64 chunk, int push_ws);
3413 extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3414  enum sched_type schedule, kmp_uint64 lb,
3415  kmp_uint64 ub, kmp_int64 st,
3416  kmp_int64 chunk, int push_ws);
3417 extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3418 extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3419 extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3420 extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3421 
3422 #endif /* KMP_GOMP_COMPAT */
3423 
3424 extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3425 extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3426 extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3427 extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3428 extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3429 extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3430  kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3431  void *obj);
3432 extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3433  kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3434 
3435 extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3436  int final_spin
3437 #if USE_ITT_BUILD
3438  ,
3439  void *itt_sync_obj
3440 #endif
3441  );
3442 extern void __kmp_release_64(kmp_flag_64<> *flag);
3443 
3444 extern void __kmp_infinite_loop(void);
3445 
3446 extern void __kmp_cleanup(void);
3447 
3448 #if KMP_HANDLE_SIGNALS
3449 extern int __kmp_handle_signals;
3450 extern void __kmp_install_signals(int parallel_init);
3451 extern void __kmp_remove_signals(void);
3452 #endif
3453 
3454 extern void __kmp_clear_system_time(void);
3455 extern void __kmp_read_system_time(double *delta);
3456 
3457 extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3458 
3459 extern void __kmp_expand_host_name(char *buffer, size_t size);
3460 extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3461 
3462 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
3463 extern void
3464 __kmp_initialize_system_tick(void); /* Initialize timer tick value */
3465 #endif
3466 
3467 extern void
3468 __kmp_runtime_initialize(void); /* machine specific initialization */
3469 extern void __kmp_runtime_destroy(void);
3470 
3471 #if KMP_AFFINITY_SUPPORTED
3472 extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3473  kmp_affin_mask_t *mask);
3474 extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3475  kmp_affin_mask_t *mask);
3476 extern void __kmp_affinity_initialize(void);
3477 extern void __kmp_affinity_uninitialize(void);
3478 extern void __kmp_affinity_set_init_mask(
3479  int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3480 extern void __kmp_affinity_set_place(int gtid);
3481 extern void __kmp_affinity_determine_capable(const char *env_var);
3482 extern int __kmp_aux_set_affinity(void **mask);
3483 extern int __kmp_aux_get_affinity(void **mask);
3484 extern int __kmp_aux_get_affinity_max_proc();
3485 extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3486 extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3487 extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3488 extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3489 #if KMP_OS_LINUX || KMP_OS_FREEBSD
3490 extern int kmp_set_thread_affinity_mask_initial(void);
3491 #endif
3492 #endif /* KMP_AFFINITY_SUPPORTED */
3493 // No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3494 // format string is for affinity, so platforms that do not support
3495 // affinity can still use the other fields, e.g., %n for num_threads
3496 extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3497  kmp_str_buf_t *buffer);
3498 extern void __kmp_aux_display_affinity(int gtid, const char *format);
3499 
3500 extern void __kmp_cleanup_hierarchy();
3501 extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3502 
3503 #if KMP_USE_FUTEX
3504 
3505 extern int __kmp_futex_determine_capable(void);
3506 
3507 #endif // KMP_USE_FUTEX
3508 
3509 extern void __kmp_gtid_set_specific(int gtid);
3510 extern int __kmp_gtid_get_specific(void);
3511 
3512 extern double __kmp_read_cpu_time(void);
3513 
3514 extern int __kmp_read_system_info(struct kmp_sys_info *info);
3515 
3516 #if KMP_USE_MONITOR
3517 extern void __kmp_create_monitor(kmp_info_t *th);
3518 #endif
3519 
3520 extern void *__kmp_launch_thread(kmp_info_t *thr);
3521 
3522 extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3523 
3524 #if KMP_OS_WINDOWS
3525 extern int __kmp_still_running(kmp_info_t *th);
3526 extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3527 extern void __kmp_free_handle(kmp_thread_t tHandle);
3528 #endif
3529 
3530 #if KMP_USE_MONITOR
3531 extern void __kmp_reap_monitor(kmp_info_t *th);
3532 #endif
3533 extern void __kmp_reap_worker(kmp_info_t *th);
3534 extern void __kmp_terminate_thread(int gtid);
3535 
3536 extern int __kmp_try_suspend_mx(kmp_info_t *th);
3537 extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3538 extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3539 
3540 extern void __kmp_elapsed(double *);
3541 extern void __kmp_elapsed_tick(double *);
3542 
3543 extern void __kmp_enable(int old_state);
3544 extern void __kmp_disable(int *old_state);
3545 
3546 extern void __kmp_thread_sleep(int millis);
3547 
3548 extern void __kmp_common_initialize(void);
3549 extern void __kmp_common_destroy(void);
3550 extern void __kmp_common_destroy_gtid(int gtid);
3551 
3552 #if KMP_OS_UNIX
3553 extern void __kmp_register_atfork(void);
3554 #endif
3555 extern void __kmp_suspend_initialize(void);
3556 extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3557 extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3558 
3559 extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3560  int tid);
3561 extern kmp_team_t *
3562 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3563 #if OMPT_SUPPORT
3564  ompt_data_t ompt_parallel_data,
3565 #endif
3566  kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3567  int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3568 extern void __kmp_free_thread(kmp_info_t *);
3569 extern void __kmp_free_team(kmp_root_t *,
3570  kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3571 extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3572 
3573 /* ------------------------------------------------------------------------ */
3574 
3575 extern void __kmp_initialize_bget(kmp_info_t *th);
3576 extern void __kmp_finalize_bget(kmp_info_t *th);
3577 
3578 KMP_EXPORT void *kmpc_malloc(size_t size);
3579 KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3580 KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3581 KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3582 KMP_EXPORT void kmpc_free(void *ptr);
3583 
3584 /* declarations for internal use */
3585 
3586 extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3587  size_t reduce_size, void *reduce_data,
3588  void (*reduce)(void *, void *));
3589 extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3590 extern int __kmp_barrier_gomp_cancel(int gtid);
3591 
3596 enum fork_context_e {
3597  fork_context_gnu,
3599  fork_context_intel,
3600  fork_context_last
3601 };
3602 extern int __kmp_fork_call(ident_t *loc, int gtid,
3603  enum fork_context_e fork_context, kmp_int32 argc,
3604  microtask_t microtask, launch_t invoker,
3605  kmp_va_list ap);
3606 
3607 extern void __kmp_join_call(ident_t *loc, int gtid
3608 #if OMPT_SUPPORT
3609  ,
3610  enum fork_context_e fork_context
3611 #endif
3612  ,
3613  int exit_teams = 0);
3614 
3615 extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3616 extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3617 extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3618 extern int __kmp_invoke_task_func(int gtid);
3619 extern void __kmp_run_before_invoked_task(int gtid, int tid,
3620  kmp_info_t *this_thr,
3621  kmp_team_t *team);
3622 extern void __kmp_run_after_invoked_task(int gtid, int tid,
3623  kmp_info_t *this_thr,
3624  kmp_team_t *team);
3625 
3626 // should never have been exported
3627 KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3628 extern int __kmp_invoke_teams_master(int gtid);
3629 extern void __kmp_teams_master(int gtid);
3630 extern int __kmp_aux_get_team_num();
3631 extern int __kmp_aux_get_num_teams();
3632 extern void __kmp_save_internal_controls(kmp_info_t *thread);
3633 extern void __kmp_user_set_library(enum library_type arg);
3634 extern void __kmp_aux_set_library(enum library_type arg);
3635 extern void __kmp_aux_set_stacksize(size_t arg);
3636 extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3637 extern void __kmp_aux_set_defaults(char const *str, size_t len);
3638 
3639 /* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3640 void kmpc_set_blocktime(int arg);
3641 void ompc_set_nested(int flag);
3642 void ompc_set_dynamic(int flag);
3643 void ompc_set_num_threads(int arg);
3644 
3645 extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3646  kmp_team_t *team, int tid);
3647 extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3648 extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3649  kmp_tasking_flags_t *flags,
3650  size_t sizeof_kmp_task_t,
3651  size_t sizeof_shareds,
3652  kmp_routine_entry_t task_entry);
3653 extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3654  kmp_team_t *team, int tid,
3655  int set_curr_task);
3656 extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3657 extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3658 
3659 extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3660  int gtid,
3661  kmp_task_t *task);
3662 extern void __kmp_fulfill_event(kmp_event_t *event);
3663 
3664 extern void __kmp_free_task_team(kmp_info_t *thread,
3665  kmp_task_team_t *task_team);
3666 extern void __kmp_reap_task_teams(void);
3667 extern void __kmp_wait_to_unref_task_teams(void);
3668 extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3669  int always);
3670 extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3671 extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3672 #if USE_ITT_BUILD
3673  ,
3674  void *itt_sync_obj
3675 #endif /* USE_ITT_BUILD */
3676  ,
3677  int wait = 1);
3678 extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3679  int gtid);
3680 
3681 extern int __kmp_is_address_mapped(void *addr);
3682 extern kmp_uint64 __kmp_hardware_timestamp(void);
3683 
3684 #if KMP_OS_UNIX
3685 extern int __kmp_read_from_file(char const *path, char const *format, ...);
3686 #endif
3687 
3688 /* ------------------------------------------------------------------------ */
3689 //
3690 // Assembly routines that have no compiler intrinsic replacement
3691 //
3692 
3693 extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3694  void *argv[]
3695 #if OMPT_SUPPORT
3696  ,
3697  void **exit_frame_ptr
3698 #endif
3699  );
3700 
3701 /* ------------------------------------------------------------------------ */
3702 
3703 KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3704 KMP_EXPORT void __kmpc_end(ident_t *);
3705 
3706 KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3707  kmpc_ctor_vec ctor,
3708  kmpc_cctor_vec cctor,
3709  kmpc_dtor_vec dtor,
3710  size_t vector_length);
3711 KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3712  kmpc_ctor ctor, kmpc_cctor cctor,
3713  kmpc_dtor dtor);
3714 KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3715  void *data, size_t size);
3716 
3717 KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3718 KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3719 KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3720 KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3721 
3722 KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3723 KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3724  kmpc_micro microtask, ...);
3725 
3726 KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3727 KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3728 
3729 KMP_EXPORT void __kmpc_flush(ident_t *);
3730 KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3731 KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3732 KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3733 KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3734 KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3735 KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3736  kmp_critical_name *);
3737 KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3738  kmp_critical_name *);
3739 KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3740  kmp_critical_name *, uint32_t hint);
3741 
3742 KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3743 KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3744 
3745 KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3746  kmp_int32 global_tid);
3747 
3748 KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3749 KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3750 
3751 KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3752  kmp_int32 schedtype, kmp_int32 *plastiter,
3753  kmp_int *plower, kmp_int *pupper,
3754  kmp_int *pstride, kmp_int incr,
3755  kmp_int chunk);
3756 
3757 KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3758 
3759 KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3760  size_t cpy_size, void *cpy_data,
3761  void (*cpy_func)(void *, void *),
3762  kmp_int32 didit);
3763 
3764 extern void KMPC_SET_NUM_THREADS(int arg);
3765 extern void KMPC_SET_DYNAMIC(int flag);
3766 extern void KMPC_SET_NESTED(int flag);
3767 
3768 /* OMP 3.0 tasking interface routines */
3769 KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3770  kmp_task_t *new_task);
3771 KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3772  kmp_int32 flags,
3773  size_t sizeof_kmp_task_t,
3774  size_t sizeof_shareds,
3775  kmp_routine_entry_t task_entry);
3776 KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3777  kmp_int32 flags,
3778  size_t sizeof_kmp_task_t,
3779  size_t sizeof_shareds,
3780  kmp_routine_entry_t task_entry,
3781  kmp_int64 device_id);
3782 KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3783  kmp_task_t *task);
3784 KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3785  kmp_task_t *task);
3786 KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3787  kmp_task_t *new_task);
3788 KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3789 
3790 KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3791  int end_part);
3792 
3793 #if TASK_UNUSED
3794 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3795 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3796  kmp_task_t *task);
3797 #endif // TASK_UNUSED
3798 
3799 /* ------------------------------------------------------------------------ */
3800 
3801 KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3802 KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3803 
3804 KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3805  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3806  kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3807  kmp_depend_info_t *noalias_dep_list);
3808 KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3809  kmp_int32 ndeps,
3810  kmp_depend_info_t *dep_list,
3811  kmp_int32 ndeps_noalias,
3812  kmp_depend_info_t *noalias_dep_list);
3813 extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3814  bool serialize_immediate);
3815 
3816 KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3817  kmp_int32 cncl_kind);
3818 KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3819  kmp_int32 cncl_kind);
3820 KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3821 KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3822 
3823 KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3824 KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3825 KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3826  kmp_int32 if_val, kmp_uint64 *lb,
3827  kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3828  kmp_int32 sched, kmp_uint64 grainsize,
3829  void *task_dup);
3830 KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3831  kmp_task_t *task, kmp_int32 if_val,
3832  kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3833  kmp_int32 nogroup, kmp_int32 sched,
3834  kmp_uint64 grainsize, kmp_int32 modifier,
3835  void *task_dup);
3836 KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3837 KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3838 KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3839 KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3840  int is_ws, int num,
3841  void *data);
3842 KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3843  int num, void *data);
3844 KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3845  int is_ws);
3846 KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3847  ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3848  kmp_task_affinity_info_t *affin_list);
3849 
3850 /* Lock interface routines (fast versions with gtid passed in) */
3851 KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3852  void **user_lock);
3853 KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3854  void **user_lock);
3855 KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3856  void **user_lock);
3857 KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3858  void **user_lock);
3859 KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3860 KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3861  void **user_lock);
3862 KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3863  void **user_lock);
3864 KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3865  void **user_lock);
3866 KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3867 KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3868  void **user_lock);
3869 
3870 KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3871  void **user_lock, uintptr_t hint);
3872 KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3873  void **user_lock,
3874  uintptr_t hint);
3875 
3876 /* Interface to fast scalable reduce methods routines */
3877 
3878 KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3879  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3880  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3881  kmp_critical_name *lck);
3882 KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
3883  kmp_critical_name *lck);
3884 KMP_EXPORT kmp_int32 __kmpc_reduce(
3885  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3886  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3887  kmp_critical_name *lck);
3888 KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
3889  kmp_critical_name *lck);
3890 
3891 /* Internal fast reduction routines */
3892 
3893 extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
3894  ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3895  void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3896  kmp_critical_name *lck);
3897 
3898 // this function is for testing set/get/determine reduce method
3899 KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
3900 
3901 KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
3902 KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
3903 
3904 // C++ port
3905 // missing 'extern "C"' declarations
3906 
3907 KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
3908 KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
3909 KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
3910  kmp_int32 num_threads);
3911 
3912 KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
3913  int proc_bind);
3914 KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
3915  kmp_int32 num_teams,
3916  kmp_int32 num_threads);
3917 KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
3918  kmpc_micro microtask, ...);
3919 struct kmp_dim { // loop bounds info casted to kmp_int64
3920  kmp_int64 lo; // lower
3921  kmp_int64 up; // upper
3922  kmp_int64 st; // stride
3923 };
3924 KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
3925  kmp_int32 num_dims,
3926  const struct kmp_dim *dims);
3927 KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
3928  const kmp_int64 *vec);
3929 KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
3930  const kmp_int64 *vec);
3931 KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
3932 
3933 KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
3934  void *data, size_t size,
3935  void ***cache);
3936 
3937 // Symbols for MS mutual detection.
3938 extern int _You_must_link_with_exactly_one_OpenMP_library;
3939 extern int _You_must_link_with_Intel_OpenMP_library;
3940 #if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
3941 extern int _You_must_link_with_Microsoft_OpenMP_library;
3942 #endif
3943 
3944 // The routines below are not exported.
3945 // Consider making them 'static' in corresponding source files.
3946 void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
3947  void *data_addr, size_t pc_size);
3948 struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
3949  void *data_addr,
3950  size_t pc_size);
3951 void __kmp_threadprivate_resize_cache(int newCapacity);
3952 void __kmp_cleanup_threadprivate_caches();
3953 
3954 // ompc_, kmpc_ entries moved from omp.h.
3955 #if KMP_OS_WINDOWS
3956 #define KMPC_CONVENTION __cdecl
3957 #else
3958 #define KMPC_CONVENTION
3959 #endif
3960 
3961 #ifndef __OMP_H
3962 typedef enum omp_sched_t {
3963  omp_sched_static = 1,
3964  omp_sched_dynamic = 2,
3965  omp_sched_guided = 3,
3966  omp_sched_auto = 4
3967 } omp_sched_t;
3968 typedef void *kmp_affinity_mask_t;
3969 #endif
3970 
3971 KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
3972 KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
3973 KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
3974 KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
3975 KMP_EXPORT int KMPC_CONVENTION
3976 kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
3977 KMP_EXPORT int KMPC_CONVENTION
3978 kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
3979 KMP_EXPORT int KMPC_CONVENTION
3980 kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
3981 
3982 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
3983 KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
3984 KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
3985 KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
3986 KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
3987 
3988 enum kmp_target_offload_kind {
3989  tgt_disabled = 0,
3990  tgt_default = 1,
3991  tgt_mandatory = 2
3992 };
3993 typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
3994 // Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
3995 extern kmp_target_offload_kind_t __kmp_target_offload;
3996 extern int __kmpc_get_target_offload();
3997 
3998 // Constants used in libomptarget
3999 #define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4000 #define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4001 
4002 // OMP Pause Resource
4003 
4004 // The following enum is used both to set the status in __kmp_pause_status, and
4005 // as the internal equivalent of the externally-visible omp_pause_resource_t.
4006 typedef enum kmp_pause_status_t {
4007  kmp_not_paused = 0, // status is not paused, or, requesting resume
4008  kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4009  kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4010 } kmp_pause_status_t;
4011 
4012 // This stores the pause state of the runtime
4013 extern kmp_pause_status_t __kmp_pause_status;
4014 extern int __kmpc_pause_resource(kmp_pause_status_t level);
4015 extern int __kmp_pause_resource(kmp_pause_status_t level);
4016 // Soft resume sets __kmp_pause_status, and wakes up all threads.
4017 extern void __kmp_resume_if_soft_paused();
4018 // Hard resume simply resets the status to not paused. Library will appear to
4019 // be uninitialized after hard pause. Let OMP constructs trigger required
4020 // initializations.
4021 static inline void __kmp_resume_if_hard_paused() {
4022  if (__kmp_pause_status == kmp_hard_paused) {
4023  __kmp_pause_status = kmp_not_paused;
4024  }
4025 }
4026 
4027 extern void __kmp_omp_display_env(int verbose);
4028 
4029 // 1: it is initializing hidden helper team
4030 extern volatile int __kmp_init_hidden_helper;
4031 // 1: the hidden helper team is done
4032 extern volatile int __kmp_hidden_helper_team_done;
4033 // 1: enable hidden helper task
4034 extern kmp_int32 __kmp_enable_hidden_helper;
4035 // Main thread of hidden helper team
4036 extern kmp_info_t *__kmp_hidden_helper_main_thread;
4037 // Descriptors for the hidden helper threads
4038 extern kmp_info_t **__kmp_hidden_helper_threads;
4039 // Number of hidden helper threads
4040 extern kmp_int32 __kmp_hidden_helper_threads_num;
4041 // Number of hidden helper tasks that have not been executed yet
4042 extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4043 
4044 extern void __kmp_hidden_helper_initialize();
4045 extern void __kmp_hidden_helper_threads_initz_routine();
4046 extern void __kmp_do_initialize_hidden_helper_threads();
4047 extern void __kmp_hidden_helper_threads_initz_wait();
4048 extern void __kmp_hidden_helper_initz_release();
4049 extern void __kmp_hidden_helper_threads_deinitz_wait();
4050 extern void __kmp_hidden_helper_threads_deinitz_release();
4051 extern void __kmp_hidden_helper_main_thread_wait();
4052 extern void __kmp_hidden_helper_worker_thread_wait();
4053 extern void __kmp_hidden_helper_worker_thread_signal();
4054 extern void __kmp_hidden_helper_main_thread_release();
4055 
4056 // Check whether a given thread is a hidden helper thread
4057 #define KMP_HIDDEN_HELPER_THREAD(gtid) \
4058  ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4059 
4060 #define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4061  ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4062 
4063 // Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4064 // main thread, is skipped.
4065 #define KMP_GTID_TO_SHADOW_GTID(gtid) \
4066  ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4067 
4068 #ifdef __cplusplus
4069 }
4070 #endif
4071 
4072 template <bool C, bool S>
4073 extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4074 template <bool C, bool S>
4075 extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4076 extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4077 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4078 template <bool C, bool S>
4079 extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4080 template <bool C, bool S>
4081 extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4082 extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4083 #endif
4084 template <bool C, bool S>
4085 extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4086 template <bool C, bool S>
4087 extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4088 extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4089 
4090 template <bool C, bool S>
4091 int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4092  kmp_flag_32<C, S> *flag, int final_spin,
4093  int *thread_finished,
4094 #if USE_ITT_BUILD
4095  void *itt_sync_obj,
4096 #endif /* USE_ITT_BUILD */
4097  kmp_int32 is_constrained);
4098 template <bool C, bool S>
4099 int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4100  kmp_flag_64<C, S> *flag, int final_spin,
4101  int *thread_finished,
4102 #if USE_ITT_BUILD
4103  void *itt_sync_obj,
4104 #endif /* USE_ITT_BUILD */
4105  kmp_int32 is_constrained);
4106 int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4107  kmp_flag_oncore *flag, int final_spin,
4108  int *thread_finished,
4109 #if USE_ITT_BUILD
4110  void *itt_sync_obj,
4111 #endif /* USE_ITT_BUILD */
4112  kmp_int32 is_constrained);
4113 
4121  FILE *f;
4122 
4123  void close() {
4124  if (f && f != stdout && f != stderr) {
4125  fclose(f);
4126  f = nullptr;
4127  }
4128  }
4129 
4130 public:
4131  kmp_safe_raii_file_t() : f(nullptr) {}
4132  kmp_safe_raii_file_t(const char *filename, const char *mode,
4133  const char *env_var = nullptr)
4134  : f(nullptr) {
4135  open(filename, mode, env_var);
4136  }
4137  ~kmp_safe_raii_file_t() { close(); }
4138 
4142  void open(const char *filename, const char *mode,
4143  const char *env_var = nullptr) {
4144  KMP_ASSERT(!f);
4145  f = fopen(filename, mode);
4146  if (!f) {
4147  int code = errno;
4148  if (env_var) {
4149  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4150  KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4151  } else {
4152  __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4153  __kmp_msg_null);
4154  }
4155  }
4156  }
4159  void set_stdout() {
4160  KMP_ASSERT(!f);
4161  f = stdout;
4162  }
4165  void set_stderr() {
4166  KMP_ASSERT(!f);
4167  f = stderr;
4168  }
4169  operator bool() { return bool(f); }
4170  operator FILE *() { return f; }
4171 };
4172 
4173 template <typename SourceType, typename TargetType,
4174  bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4175  bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4176  bool isSourceSigned = std::is_signed<SourceType>::value,
4177  bool isTargetSigned = std::is_signed<TargetType>::value>
4178 struct kmp_convert {};
4179 
4180 // Both types are signed; Source smaller
4181 template <typename SourceType, typename TargetType>
4182 struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4183  static TargetType to(SourceType src) { return (TargetType)src; }
4184 };
4185 // Source equal
4186 template <typename SourceType, typename TargetType>
4187 struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4188  static TargetType to(SourceType src) { return src; }
4189 };
4190 // Source bigger
4191 template <typename SourceType, typename TargetType>
4192 struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4193  static TargetType to(SourceType src) {
4194  KMP_ASSERT(src <= static_cast<SourceType>(
4195  (std::numeric_limits<TargetType>::max)()));
4196  KMP_ASSERT(src >= static_cast<SourceType>(
4197  (std::numeric_limits<TargetType>::min)()));
4198  return (TargetType)src;
4199  }
4200 };
4201 
4202 // Source signed, Target unsigned
4203 // Source smaller
4204 template <typename SourceType, typename TargetType>
4205 struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4206  static TargetType to(SourceType src) {
4207  KMP_ASSERT(src >= 0);
4208  return (TargetType)src;
4209  }
4210 };
4211 // Source equal
4212 template <typename SourceType, typename TargetType>
4213 struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4214  static TargetType to(SourceType src) {
4215  KMP_ASSERT(src >= 0);
4216  return (TargetType)src;
4217  }
4218 };
4219 // Source bigger
4220 template <typename SourceType, typename TargetType>
4221 struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4222  static TargetType to(SourceType src) {
4223  KMP_ASSERT(src >= 0);
4224  KMP_ASSERT(src <= static_cast<SourceType>(
4225  (std::numeric_limits<TargetType>::max)()));
4226  return (TargetType)src;
4227  }
4228 };
4229 
4230 // Source unsigned, Target signed
4231 // Source smaller
4232 template <typename SourceType, typename TargetType>
4233 struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4234  static TargetType to(SourceType src) { return (TargetType)src; }
4235 };
4236 // Source equal
4237 template <typename SourceType, typename TargetType>
4238 struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4239  static TargetType to(SourceType src) {
4240  KMP_ASSERT(src <= static_cast<SourceType>(
4241  (std::numeric_limits<TargetType>::max)()));
4242  return (TargetType)src;
4243  }
4244 };
4245 // Source bigger
4246 template <typename SourceType, typename TargetType>
4247 struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4248  static TargetType to(SourceType src) {
4249  KMP_ASSERT(src <= static_cast<SourceType>(
4250  (std::numeric_limits<TargetType>::max)()));
4251  return (TargetType)src;
4252  }
4253 };
4254 
4255 // Source unsigned, Target unsigned
4256 // Source smaller
4257 template <typename SourceType, typename TargetType>
4258 struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4259  static TargetType to(SourceType src) { return (TargetType)src; }
4260 };
4261 // Source equal
4262 template <typename SourceType, typename TargetType>
4263 struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4264  static TargetType to(SourceType src) { return src; }
4265 };
4266 // Source bigger
4267 template <typename SourceType, typename TargetType>
4268 struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4269  static TargetType to(SourceType src) {
4270  KMP_ASSERT(src <= static_cast<SourceType>(
4271  (std::numeric_limits<TargetType>::max)()));
4272  return (TargetType)src;
4273  }
4274 };
4275 
4276 template <typename T1, typename T2>
4277 static inline void __kmp_type_convert(T1 src, T2 *dest) {
4278  *dest = kmp_convert<T1, T2>::to(src);
4279 }
4280 
4281 #endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4159
void set_stderr()
Definition: kmp.h:4165
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4142
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:191
@ KMP_IDENT_IMB
Definition: kmp.h:189
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:209
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:200
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:211
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:194
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:218
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:213
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:198
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:196
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1523
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1547
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1541
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1564
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1554
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1576
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1570
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:351
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:402
@ kmp_sch_runtime_simd
Definition: kmp.h:373
@ kmp_nm_ord_auto
Definition: kmp.h:421
@ kmp_sch_auto
Definition: kmp.h:358
@ kmp_nm_auto
Definition: kmp.h:404
@ kmp_distribute_static_chunked
Definition: kmp.h:389
@ kmp_sch_static
Definition: kmp.h:354
@ kmp_sch_guided_simd
Definition: kmp.h:372
@ kmp_sch_modifier_monotonic
Definition: kmp.h:439
@ kmp_sch_default
Definition: kmp.h:459
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:441
@ kmp_nm_ord_static
Definition: kmp.h:417
@ kmp_distribute_static
Definition: kmp.h:390
@ kmp_sch_guided_chunked
Definition: kmp.h:356
@ kmp_nm_static
Definition: kmp.h:400
@ kmp_sch_lower
Definition: kmp.h:352
@ kmp_nm_upper
Definition: kmp.h:423
@ kmp_ord_lower
Definition: kmp.h:378
@ kmp_ord_static
Definition: kmp.h:380
@ kmp_sch_upper
Definition: kmp.h:376
@ kmp_ord_upper
Definition: kmp.h:386
@ kmp_nm_lower
Definition: kmp.h:396
@ kmp_ord_auto
Definition: kmp.h:384
Definition: kmp.h:229
kmp_int32 reserved_1
Definition: kmp.h:230
char const * psource
Definition: kmp.h:239
kmp_int32 reserved_2
Definition: kmp.h:233
kmp_int32 reserved_3
Definition: kmp.h:238
kmp_int32 flags
Definition: kmp.h:231