Home | Trees | Indices | Help |
|
---|
|
object --+ | SparseVector
A simple sparse vector class for passing data to MLlib. Users may alternatively pass SciPy's {scipy.sparse} data types.
Instance Methods | |||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from |
Properties | |
Inherited from |
Method Details |
Create a sparse vector, using either a dictionary, a list of (index, value) pairs, or two separate arrays of indices and values (sorted by index). @param size: Size of the vector. @param args: Non-zero entries, as a dictionary, list of tupes, or two sorted lists containing indices and values. >>> print SparseVector(4, {1: 1.0, 3: 5.5}) [1: 1.0, 3: 5.5] >>> print SparseVector(4, [(1, 1.0), (3, 5.5)]) [1: 1.0, 3: 5.5] >>> print SparseVector(4, [1, 3], [1.0, 5.5]) [1: 1.0, 3: 5.5]
|
Dot product with a SparseVector or 1- or 2-dimensional Numpy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.dot(a) 25.0 >>> a.dot(array([1., 2., 3., 4.])) 22.0 >>> b = SparseVector(4, [2, 4], [1.0, 2.0]) >>> a.dot(b) 0.0 >>> a.dot(array([[1, 1], [2, 2], [3, 3], [4, 4]])) array([ 22., 22.]) |
Squared distance from a SparseVector or 1-dimensional NumPy array. >>> a = SparseVector(4, [1, 3], [3.0, 4.0]) >>> a.squared_distance(a) 0.0 >>> a.squared_distance(array([1., 2., 3., 4.])) 11.0 >>> b = SparseVector(4, [2, 4], [1.0, 2.0]) >>> a.squared_distance(b) 30.0 >>> b.squared_distance(a) 30.0 |
str(x)
|
repr(x)
|
Test SparseVectors for equality. >>> v1 = SparseVector(4, [(1, 1.0), (3, 5.5)]) >>> v2 = SparseVector(4, [(1, 1.0), (3, 5.5)]) >>> v1 == v2 True >>> v1 != v2 False |
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Fri Jul 25 21:13:27 2014 | http://epydoc.sourceforge.net |