Home | Trees | Indices | Help |
|
---|
|
object --+ | LogisticRegressionWithSGD
Instance Methods | |
Inherited from |
Class Methods | |||
|
Properties | |
Inherited from |
Method Details |
Train a logistic regression model on the given data. @param data: The training data. @param iterations: The number of iterations (default: 100). @param step: The step parameter used in SGD (default: 1.0). @param miniBatchFraction: Fraction of data to be used for each SGD iteration. @param initialWeights: The initial weights (default: None). @param regParam: The regularizer parameter (default: 1.0). @param regType: The type of regularizer used for training our model. Allowed values: "l1" for using L1Updater, "l2" for using SquaredL2Updater, "none" for no regularizer. (default: "none") @param intercept: Boolean parameter which indicates the use or not of the augmented representation for training data (i.e. whether bias features are activated or not). |
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Thu Sep 11 01:19:40 2014 | http://epydoc.sourceforge.net |