Package pyspark :: Package mllib :: Module util
[frames] | no frames]

Source Code for Module pyspark.mllib.util

  1  # 
  2  # Licensed to the Apache Software Foundation (ASF) under one or more 
  3  # contributor license agreements.  See the NOTICE file distributed with 
  4  # this work for additional information regarding copyright ownership. 
  5  # The ASF licenses this file to You under the Apache License, Version 2.0 
  6  # (the "License"); you may not use this file except in compliance with 
  7  # the License.  You may obtain a copy of the License at 
  8  # 
  9  #    http://www.apache.org/licenses/LICENSE-2.0 
 10  # 
 11  # Unless required by applicable law or agreed to in writing, software 
 12  # distributed under the License is distributed on an "AS IS" BASIS, 
 13  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 
 14  # See the License for the specific language governing permissions and 
 15  # limitations under the License. 
 16  # 
 17   
 18  import numpy as np 
 19  import warnings 
 20   
 21  from pyspark.mllib.linalg import Vectors, SparseVector 
 22  from pyspark.mllib.regression import LabeledPoint 
 23  from pyspark.mllib._common import _convert_vector, _deserialize_labeled_point 
 24  from pyspark.rdd import RDD 
 25  from pyspark.serializers import NoOpSerializer 
26 27 28 -class MLUtils:
29 30 """ 31 Helper methods to load, save and pre-process data used in MLlib. 32 """ 33 34 @staticmethod
35 - def _parse_libsvm_line(line, multiclass):
36 warnings.warn("deprecated", DeprecationWarning) 37 return _parse_libsvm_line(line)
38 39 @staticmethod
40 - def _parse_libsvm_line(line):
41 """ 42 Parses a line in LIBSVM format into (label, indices, values). 43 """ 44 items = line.split(None) 45 label = float(items[0]) 46 nnz = len(items) - 1 47 indices = np.zeros(nnz, dtype=np.int32) 48 values = np.zeros(nnz) 49 for i in xrange(nnz): 50 index, value = items[1 + i].split(":") 51 indices[i] = int(index) - 1 52 values[i] = float(value) 53 return label, indices, values
54 55 @staticmethod
57 """Converts a LabeledPoint to a string in LIBSVM format.""" 58 items = [str(p.label)] 59 v = _convert_vector(p.features) 60 if type(v) == np.ndarray: 61 for i in xrange(len(v)): 62 items.append(str(i + 1) + ":" + str(v[i])) 63 elif type(v) == SparseVector: 64 nnz = len(v.indices) 65 for i in xrange(nnz): 66 items.append(str(v.indices[i] + 1) + ":" + str(v.values[i])) 67 else: 68 raise TypeError("_convert_labeled_point_to_libsvm needs either ndarray or SparseVector" 69 " but got " % type(v)) 70 return " ".join(items)
71 72 @staticmethod
73 - def loadLibSVMFile(sc, path, multiclass=False, numFeatures=-1, minPartitions=None):
74 warnings.warn("deprecated", DeprecationWarning) 75 return loadLibSVMFile(sc, path, numFeatures, minPartitions)
76 77 @staticmethod
78 - def loadLibSVMFile(sc, path, numFeatures=-1, minPartitions=None):
79 """ 80 Loads labeled data in the LIBSVM format into an RDD of 81 LabeledPoint. The LIBSVM format is a text-based format used by 82 LIBSVM and LIBLINEAR. Each line represents a labeled sparse 83 feature vector using the following format: 84 85 label index1:value1 index2:value2 ... 86 87 where the indices are one-based and in ascending order. This 88 method parses each line into a LabeledPoint, where the feature 89 indices are converted to zero-based. 90 91 @param sc: Spark context 92 @param path: file or directory path in any Hadoop-supported file 93 system URI 94 @param numFeatures: number of features, which will be determined 95 from the input data if a nonpositive value 96 is given. This is useful when the dataset is 97 already split into multiple files and you 98 want to load them separately, because some 99 features may not present in certain files, 100 which leads to inconsistent feature 101 dimensions. 102 @param minPartitions: min number of partitions 103 @return: labeled data stored as an RDD of LabeledPoint 104 105 >>> from tempfile import NamedTemporaryFile 106 >>> from pyspark.mllib.util import MLUtils 107 >>> tempFile = NamedTemporaryFile(delete=True) 108 >>> tempFile.write("+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0") 109 >>> tempFile.flush() 110 >>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect() 111 >>> tempFile.close() 112 >>> type(examples[0]) == LabeledPoint 113 True 114 >>> print examples[0] 115 (1.0,(6,[0,2,4],[1.0,2.0,3.0])) 116 >>> type(examples[1]) == LabeledPoint 117 True 118 >>> print examples[1] 119 (-1.0,(6,[],[])) 120 >>> type(examples[2]) == LabeledPoint 121 True 122 >>> print examples[2] 123 (-1.0,(6,[1,3,5],[4.0,5.0,6.0])) 124 """ 125 126 lines = sc.textFile(path, minPartitions) 127 parsed = lines.map(lambda l: MLUtils._parse_libsvm_line(l)) 128 if numFeatures <= 0: 129 parsed.cache() 130 numFeatures = parsed.map(lambda x: -1 if x[1].size == 0 else x[1][-1]).reduce(max) + 1 131 return parsed.map(lambda x: LabeledPoint(x[0], Vectors.sparse(numFeatures, x[1], x[2])))
132 133 @staticmethod
134 - def saveAsLibSVMFile(data, dir):
135 """ 136 Save labeled data in LIBSVM format. 137 138 @param data: an RDD of LabeledPoint to be saved 139 @param dir: directory to save the data 140 141 >>> from tempfile import NamedTemporaryFile 142 >>> from fileinput import input 143 >>> from glob import glob 144 >>> from pyspark.mllib.util import MLUtils 145 >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, 1.23), (2, 4.56)])), \ 146 LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] 147 >>> tempFile = NamedTemporaryFile(delete=True) 148 >>> tempFile.close() 149 >>> MLUtils.saveAsLibSVMFile(sc.parallelize(examples), tempFile.name) 150 >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) 151 '0.0 1:1.01 2:2.02 3:3.03\\n1.1 1:1.23 3:4.56\\n' 152 """ 153 lines = data.map(lambda p: MLUtils._convert_labeled_point_to_libsvm(p)) 154 lines.saveAsTextFile(dir)
155 156 @staticmethod
157 - def loadLabeledPoints(sc, path, minPartitions=None):
158 """ 159 Load labeled points saved using RDD.saveAsTextFile. 160 161 @param sc: Spark context 162 @param path: file or directory path in any Hadoop-supported file 163 system URI 164 @param minPartitions: min number of partitions 165 @return: labeled data stored as an RDD of LabeledPoint 166 167 >>> from tempfile import NamedTemporaryFile 168 >>> from pyspark.mllib.util import MLUtils 169 >>> examples = [LabeledPoint(1.1, Vectors.sparse(3, [(0, -1.23), (2, 4.56e-7)])), \ 170 LabeledPoint(0.0, Vectors.dense([1.01, 2.02, 3.03]))] 171 >>> tempFile = NamedTemporaryFile(delete=True) 172 >>> tempFile.close() 173 >>> sc.parallelize(examples, 1).saveAsTextFile(tempFile.name) 174 >>> loaded = MLUtils.loadLabeledPoints(sc, tempFile.name).collect() 175 >>> type(loaded[0]) == LabeledPoint 176 True 177 >>> print examples[0] 178 (1.1,(3,[0,2],[-1.23,4.56e-07])) 179 >>> type(examples[1]) == LabeledPoint 180 True 181 >>> print examples[1] 182 (0.0,[1.01,2.02,3.03]) 183 """ 184 minPartitions = minPartitions or min(sc.defaultParallelism, 2) 185 jSerialized = sc._jvm.PythonMLLibAPI().loadLabeledPoints(sc._jsc, path, minPartitions) 186 serialized = RDD(jSerialized, sc, NoOpSerializer()) 187 return serialized.map(lambda bytes: _deserialize_labeled_point(bytearray(bytes)))
188
189 190 -def _test():
191 import doctest 192 from pyspark.context import SparkContext 193 globs = globals().copy() 194 # The small batch size here ensures that we see multiple batches, 195 # even in these small test examples: 196 globs['sc'] = SparkContext('local[2]', 'PythonTest', batchSize=2) 197 (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) 198 globs['sc'].stop() 199 if failure_count: 200 exit(-1)
201 202 203 if __name__ == "__main__": 204 _test() 205