org.apache.spark |
Core Spark classes in Scala.
|
org.apache.spark.annotation |
Spark annotations to mark an API experimental or intended only for advanced usages by developers.
|
org.apache.spark.api.java |
Spark Java programming APIs.
|
org.apache.spark.api.java.function |
Set of interfaces to represent functions in Spark's Java API.
|
org.apache.spark.api.r |
|
org.apache.spark.broadcast |
Spark's broadcast variables, used to broadcast immutable datasets to all nodes.
|
org.apache.spark.examples.streaming |
|
org.apache.spark.graphx |
ALPHA COMPONENT
GraphX is a graph processing framework built on top of Spark.
|
org.apache.spark.graphx.impl |
|
org.apache.spark.graphx.lib |
Various analytics functions for graphs.
|
org.apache.spark.graphx.util |
Collections of utilities used by graphx.
|
org.apache.spark.input |
|
org.apache.spark.io |
IO codecs used for compression.
|
org.apache.spark.launcher |
Library for launching Spark applications.
|
org.apache.spark.ml |
Spark ML is a BETA component that adds a new set of machine learning APIs to let users quickly
assemble and configure practical machine learning pipelines.
|
org.apache.spark.ml.attribute |
ML attributes
|
org.apache.spark.ml.classification |
|
org.apache.spark.ml.clustering |
|
org.apache.spark.ml.evaluation |
|
org.apache.spark.ml.feature |
|
org.apache.spark.ml.param |
|
org.apache.spark.ml.recommendation |
|
org.apache.spark.ml.regression |
|
org.apache.spark.ml.tree |
|
org.apache.spark.ml.tuning |
|
org.apache.spark.ml.util |
|
org.apache.spark.mllib.classification |
|
org.apache.spark.mllib.clustering |
|
org.apache.spark.mllib.evaluation |
|
org.apache.spark.mllib.feature |
|
org.apache.spark.mllib.fpm |
|
org.apache.spark.mllib.linalg |
|
org.apache.spark.mllib.linalg.distributed |
|
org.apache.spark.mllib.optimization |
|
org.apache.spark.mllib.pmml |
|
org.apache.spark.mllib.random |
|
org.apache.spark.mllib.rdd |
|
org.apache.spark.mllib.recommendation |
|
org.apache.spark.mllib.regression |
|
org.apache.spark.mllib.stat |
|
org.apache.spark.mllib.stat.distribution |
|
org.apache.spark.mllib.stat.test |
|
org.apache.spark.mllib.tree |
|
org.apache.spark.mllib.tree.configuration |
|
org.apache.spark.mllib.tree.impurity |
|
org.apache.spark.mllib.tree.loss |
|
org.apache.spark.mllib.tree.model |
|
org.apache.spark.mllib.util |
|
org.apache.spark.partial |
|
org.apache.spark.rdd |
Provides implementation's of various RDDs.
|
org.apache.spark.scheduler |
Spark's DAG scheduler.
|
org.apache.spark.scheduler.cluster |
|
org.apache.spark.scheduler.local |
|
org.apache.spark.serializer |
Pluggable serializers for RDD and shuffle data.
|
org.apache.spark.sql |
|
org.apache.spark.sql.api.java |
Allows the execution of relational queries, including those expressed in SQL using Spark.
|
org.apache.spark.sql.expressions |
|
org.apache.spark.sql.hive |
|
org.apache.spark.sql.hive.execution |
|
org.apache.spark.sql.jdbc |
|
org.apache.spark.sql.sources |
|
org.apache.spark.sql.types |
|
org.apache.spark.status.api.v1 |
|
org.apache.spark.storage |
|
org.apache.spark.streaming |
|
org.apache.spark.streaming.api.java |
Java APIs for spark streaming.
|
org.apache.spark.streaming.dstream |
Various implementations of DStreams.
|
org.apache.spark.streaming.flume |
Spark streaming receiver for Flume.
|
org.apache.spark.streaming.kafka |
Kafka receiver for spark streaming.
|
org.apache.spark.streaming.kinesis |
|
org.apache.spark.streaming.mqtt |
MQTT receiver for Spark Streaming.
|
org.apache.spark.streaming.receiver |
|
org.apache.spark.streaming.scheduler |
|
org.apache.spark.streaming.twitter |
Twitter feed receiver for spark streaming.
|
org.apache.spark.streaming.util |
|
org.apache.spark.streaming.zeromq |
Zeromq receiver for spark streaming.
|
org.apache.spark.ui.env |
|
org.apache.spark.ui.exec |
|
org.apache.spark.ui.jobs |
|
org.apache.spark.ui.storage |
|
org.apache.spark.util |
Spark utilities.
|
org.apache.spark.util.random |
Utilities for random number generation.
|