public class EigenValueDecomposition
extends java.lang.Object
Constructor and Description |
---|
EigenValueDecomposition() |
Modifier and Type | Method and Description |
---|---|
static scala.Tuple2<breeze.linalg.DenseVector<java.lang.Object>,breeze.linalg.DenseMatrix<java.lang.Object>> |
symmetricEigs(scala.Function1<breeze.linalg.DenseVector<java.lang.Object>,breeze.linalg.DenseVector<java.lang.Object>> mul,
int n,
int k,
double tol,
int maxIterations)
Compute the leading k eigenvalues and eigenvectors on a symmetric square matrix using ARPACK.
|
public static scala.Tuple2<breeze.linalg.DenseVector<java.lang.Object>,breeze.linalg.DenseMatrix<java.lang.Object>> symmetricEigs(scala.Function1<breeze.linalg.DenseVector<java.lang.Object>,breeze.linalg.DenseVector<java.lang.Object>> mul, int n, int k, double tol, int maxIterations)
n*(4*k+4)
doubles.
mul
- a function that multiplies the symmetric matrix with a DenseVector.n
- dimension of the square matrix (maximum Int.MaxValue).k
- number of leading eigenvalues required, 0 < k < n.tol
- tolerance of the eigs computation.maxIterations
- the maximum number of Arnoldi update iterations.