public class PairDStreamFunctions<K,V>
extends Object
implements scala.Serializable
Constructor and Description |
---|
PairDStreamFunctions(DStream<scala.Tuple2<K,V>> self,
scala.reflect.ClassTag<K> kt,
scala.reflect.ClassTag<V> vt,
scala.math.Ordering<K> ord) |
Modifier and Type | Method and Description |
---|---|
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> |
cogroup(DStream<scala.Tuple2<K,W>> other,
scala.reflect.ClassTag<W> evidence$13)
Return a new DStream by applying 'cogroup' between RDDs of
this DStream and other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> |
cogroup(DStream<scala.Tuple2<K,W>> other,
int numPartitions,
scala.reflect.ClassTag<W> evidence$14)
Return a new DStream by applying 'cogroup' between RDDs of
this DStream and other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> |
cogroup(DStream<scala.Tuple2<K,W>> other,
Partitioner partitioner,
scala.reflect.ClassTag<W> evidence$15)
Return a new DStream by applying 'cogroup' between RDDs of
this DStream and other DStream. |
<C> DStream<scala.Tuple2<K,C>> |
combineByKey(scala.Function1<V,C> createCombiner,
scala.Function2<C,V,C> mergeValue,
scala.Function2<C,C,C> mergeCombiner,
Partitioner partitioner,
boolean mapSideCombine,
scala.reflect.ClassTag<C> evidence$1)
Combine elements of each key in DStream's RDDs using custom functions.
|
<U> DStream<scala.Tuple2<K,U>> |
flatMapValues(scala.Function1<V,scala.collection.TraversableOnce<U>> flatMapValuesFunc,
scala.reflect.ClassTag<U> evidence$12)
Return a new DStream by applying a flatmap function to the value of each key-value pairs in
'this' DStream without changing the key.
|
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> |
fullOuterJoin(DStream<scala.Tuple2<K,W>> other,
scala.reflect.ClassTag<W> evidence$25)
Return a new DStream by applying 'full outer join' between RDDs of
this DStream and
other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> |
fullOuterJoin(DStream<scala.Tuple2<K,W>> other,
int numPartitions,
scala.reflect.ClassTag<W> evidence$26)
Return a new DStream by applying 'full outer join' between RDDs of
this DStream and
other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> |
fullOuterJoin(DStream<scala.Tuple2<K,W>> other,
Partitioner partitioner,
scala.reflect.ClassTag<W> evidence$27)
Return a new DStream by applying 'full outer join' between RDDs of
this DStream and
other DStream. |
DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> |
groupByKey()
Return a new DStream by applying
groupByKey to each RDD. |
DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> |
groupByKey(int numPartitions)
Return a new DStream by applying
groupByKey to each RDD. |
DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> |
groupByKey(Partitioner partitioner)
Return a new DStream by applying
groupByKey on each RDD. |
DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> |
groupByKeyAndWindow(Duration windowDuration)
Return a new DStream by applying
groupByKey over a sliding window. |
DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> |
groupByKeyAndWindow(Duration windowDuration,
Duration slideDuration)
Return a new DStream by applying
groupByKey over a sliding window. |
DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> |
groupByKeyAndWindow(Duration windowDuration,
Duration slideDuration,
int numPartitions)
Return a new DStream by applying
groupByKey over a sliding window on this DStream. |
DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> |
groupByKeyAndWindow(Duration windowDuration,
Duration slideDuration,
Partitioner partitioner)
Create a new DStream by applying
groupByKey over a sliding window on this DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<V,W>>> |
join(DStream<scala.Tuple2<K,W>> other,
scala.reflect.ClassTag<W> evidence$16)
Return a new DStream by applying 'join' between RDDs of
this DStream and other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<V,W>>> |
join(DStream<scala.Tuple2<K,W>> other,
int numPartitions,
scala.reflect.ClassTag<W> evidence$17)
Return a new DStream by applying 'join' between RDDs of
this DStream and other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<V,W>>> |
join(DStream<scala.Tuple2<K,W>> other,
Partitioner partitioner,
scala.reflect.ClassTag<W> evidence$18)
Return a new DStream by applying 'join' between RDDs of
this DStream and other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> |
leftOuterJoin(DStream<scala.Tuple2<K,W>> other,
scala.reflect.ClassTag<W> evidence$19)
Return a new DStream by applying 'left outer join' between RDDs of
this DStream and
other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> |
leftOuterJoin(DStream<scala.Tuple2<K,W>> other,
int numPartitions,
scala.reflect.ClassTag<W> evidence$20)
Return a new DStream by applying 'left outer join' between RDDs of
this DStream and
other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> |
leftOuterJoin(DStream<scala.Tuple2<K,W>> other,
Partitioner partitioner,
scala.reflect.ClassTag<W> evidence$21)
Return a new DStream by applying 'left outer join' between RDDs of
this DStream and
other DStream. |
<U> DStream<scala.Tuple2<K,U>> |
mapValues(scala.Function1<V,U> mapValuesFunc,
scala.reflect.ClassTag<U> evidence$11)
Return a new DStream by applying a map function to the value of each key-value pairs in
'this' DStream without changing the key.
|
<StateType,MappedType> |
mapWithState(StateSpec<K,V,StateType,MappedType> spec,
scala.reflect.ClassTag<StateType> evidence$2,
scala.reflect.ClassTag<MappedType> evidence$3)
:: Experimental ::
Return a
MapWithStateDStream by applying a function to every key-value element of
this stream, while maintaining some state data for each unique key. |
DStream<scala.Tuple2<K,V>> |
reduceByKey(scala.Function2<V,V,V> reduceFunc)
Return a new DStream by applying
reduceByKey to each RDD. |
DStream<scala.Tuple2<K,V>> |
reduceByKey(scala.Function2<V,V,V> reduceFunc,
int numPartitions)
Return a new DStream by applying
reduceByKey to each RDD. |
DStream<scala.Tuple2<K,V>> |
reduceByKey(scala.Function2<V,V,V> reduceFunc,
Partitioner partitioner)
Return a new DStream by applying
reduceByKey to each RDD. |
DStream<scala.Tuple2<K,V>> |
reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc,
Duration windowDuration)
Return a new DStream by applying
reduceByKey over a sliding window on this DStream. |
DStream<scala.Tuple2<K,V>> |
reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc,
Duration windowDuration,
Duration slideDuration)
Return a new DStream by applying
reduceByKey over a sliding window. |
DStream<scala.Tuple2<K,V>> |
reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc,
Duration windowDuration,
Duration slideDuration,
int numPartitions)
Return a new DStream by applying
reduceByKey over a sliding window. |
DStream<scala.Tuple2<K,V>> |
reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc,
Duration windowDuration,
Duration slideDuration,
Partitioner partitioner)
Return a new DStream by applying
reduceByKey over a sliding window. |
DStream<scala.Tuple2<K,V>> |
reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc,
scala.Function2<V,V,V> invReduceFunc,
Duration windowDuration,
Duration slideDuration,
int numPartitions,
scala.Function1<scala.Tuple2<K,V>,Object> filterFunc)
Return a new DStream by applying incremental
reduceByKey over a sliding window. |
DStream<scala.Tuple2<K,V>> |
reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc,
scala.Function2<V,V,V> invReduceFunc,
Duration windowDuration,
Duration slideDuration,
Partitioner partitioner,
scala.Function1<scala.Tuple2<K,V>,Object> filterFunc)
Return a new DStream by applying incremental
reduceByKey over a sliding window. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> |
rightOuterJoin(DStream<scala.Tuple2<K,W>> other,
scala.reflect.ClassTag<W> evidence$22)
Return a new DStream by applying 'right outer join' between RDDs of
this DStream and
other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> |
rightOuterJoin(DStream<scala.Tuple2<K,W>> other,
int numPartitions,
scala.reflect.ClassTag<W> evidence$23)
Return a new DStream by applying 'right outer join' between RDDs of
this DStream and
other DStream. |
<W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> |
rightOuterJoin(DStream<scala.Tuple2<K,W>> other,
Partitioner partitioner,
scala.reflect.ClassTag<W> evidence$24)
Return a new DStream by applying 'right outer join' between RDDs of
this DStream and
other DStream. |
void |
saveAsHadoopFiles(String prefix,
String suffix,
Class<?> keyClass,
Class<?> valueClass,
Class<? extends org.apache.hadoop.mapred.OutputFormat<?,?>> outputFormatClass,
org.apache.hadoop.mapred.JobConf conf)
Save each RDD in
this DStream as a Hadoop file. |
<F extends org.apache.hadoop.mapred.OutputFormat<K,V>> |
saveAsHadoopFiles(String prefix,
String suffix,
scala.reflect.ClassTag<F> fm)
Save each RDD in
this DStream as a Hadoop file. |
void |
saveAsNewAPIHadoopFiles(String prefix,
String suffix,
Class<?> keyClass,
Class<?> valueClass,
Class<? extends org.apache.hadoop.mapreduce.OutputFormat<?,?>> outputFormatClass,
org.apache.hadoop.conf.Configuration conf)
Save each RDD in
this DStream as a Hadoop file. |
<F extends org.apache.hadoop.mapreduce.OutputFormat<K,V>> |
saveAsNewAPIHadoopFiles(String prefix,
String suffix,
scala.reflect.ClassTag<F> fm)
Save each RDD in
this DStream as a Hadoop file. |
<S> DStream<scala.Tuple2<K,S>> |
updateStateByKey(scala.Function1<scala.collection.Iterator<scala.Tuple3<K,scala.collection.Seq<V>,scala.Option<S>>>,scala.collection.Iterator<scala.Tuple2<K,S>>> updateFunc,
Partitioner partitioner,
boolean rememberPartitioner,
scala.reflect.ClassTag<S> evidence$7)
Return a new "state" DStream where the state for each key is updated by applying
the given function on the previous state of the key and the new values of each key.
|
<S> DStream<scala.Tuple2<K,S>> |
updateStateByKey(scala.Function1<scala.collection.Iterator<scala.Tuple3<K,scala.collection.Seq<V>,scala.Option<S>>>,scala.collection.Iterator<scala.Tuple2<K,S>>> updateFunc,
Partitioner partitioner,
boolean rememberPartitioner,
RDD<scala.Tuple2<K,S>> initialRDD,
scala.reflect.ClassTag<S> evidence$9)
Return a new "state" DStream where the state for each key is updated by applying
the given function on the previous state of the key and the new values of each key.
|
<S> DStream<scala.Tuple2<K,S>> |
updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc,
scala.reflect.ClassTag<S> evidence$4)
Return a new "state" DStream where the state for each key is updated by applying
the given function on the previous state of the key and the new values of each key.
|
<S> DStream<scala.Tuple2<K,S>> |
updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc,
int numPartitions,
scala.reflect.ClassTag<S> evidence$5)
Return a new "state" DStream where the state for each key is updated by applying
the given function on the previous state of the key and the new values of each key.
|
<S> DStream<scala.Tuple2<K,S>> |
updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc,
Partitioner partitioner,
scala.reflect.ClassTag<S> evidence$6)
Return a new "state" DStream where the state for each key is updated by applying
the given function on the previous state of the key and the new values of the key.
|
<S> DStream<scala.Tuple2<K,S>> |
updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc,
Partitioner partitioner,
RDD<scala.Tuple2<K,S>> initialRDD,
scala.reflect.ClassTag<S> evidence$8)
Return a new "state" DStream where the state for each key is updated by applying
the given function on the previous state of the key and the new values of the key.
|
<S> DStream<scala.Tuple2<K,S>> |
updateStateByKey(scala.Function4<Time,K,scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc,
Partitioner partitioner,
boolean rememberPartitioner,
scala.Option<RDD<scala.Tuple2<K,S>>> initialRDD,
scala.reflect.ClassTag<S> evidence$10)
Return a new "state" DStream where the state for each key is updated by applying
the given function on the previous state of the key and the new values of the key.
|
public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> cogroup(DStream<scala.Tuple2<K,W>> other, scala.reflect.ClassTag<W> evidence$13)
this
DStream and other
DStream.
Hash partitioning is used to generate the RDDs with Spark's default number
of partitions.other
- (undocumented)evidence$13
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> cogroup(DStream<scala.Tuple2<K,W>> other, int numPartitions, scala.reflect.ClassTag<W> evidence$14)
this
DStream and other
DStream.
Hash partitioning is used to generate the RDDs with numPartitions
partitions.other
- (undocumented)numPartitions
- (undocumented)evidence$14
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.collection.Iterable<V>,scala.collection.Iterable<W>>>> cogroup(DStream<scala.Tuple2<K,W>> other, Partitioner partitioner, scala.reflect.ClassTag<W> evidence$15)
this
DStream and other
DStream.
The supplied org.apache.spark.Partitioner is used to partition the generated RDDs.other
- (undocumented)partitioner
- (undocumented)evidence$15
- (undocumented)public <C> DStream<scala.Tuple2<K,C>> combineByKey(scala.Function1<V,C> createCombiner, scala.Function2<C,V,C> mergeValue, scala.Function2<C,C,C> mergeCombiner, Partitioner partitioner, boolean mapSideCombine, scala.reflect.ClassTag<C> evidence$1)
createCombiner
- (undocumented)mergeValue
- (undocumented)mergeCombiner
- (undocumented)partitioner
- (undocumented)mapSideCombine
- (undocumented)evidence$1
- (undocumented)public <U> DStream<scala.Tuple2<K,U>> flatMapValues(scala.Function1<V,scala.collection.TraversableOnce<U>> flatMapValuesFunc, scala.reflect.ClassTag<U> evidence$12)
flatMapValuesFunc
- (undocumented)evidence$12
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> fullOuterJoin(DStream<scala.Tuple2<K,W>> other, scala.reflect.ClassTag<W> evidence$25)
this
DStream and
other
DStream. Hash partitioning is used to generate the RDDs with Spark's default
number of partitions.other
- (undocumented)evidence$25
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> fullOuterJoin(DStream<scala.Tuple2<K,W>> other, int numPartitions, scala.reflect.ClassTag<W> evidence$26)
this
DStream and
other
DStream. Hash partitioning is used to generate the RDDs with numPartitions
partitions.other
- (undocumented)numPartitions
- (undocumented)evidence$26
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,scala.Option<W>>>> fullOuterJoin(DStream<scala.Tuple2<K,W>> other, Partitioner partitioner, scala.reflect.ClassTag<W> evidence$27)
this
DStream and
other
DStream. The supplied org.apache.spark.Partitioner is used to control
the partitioning of each RDD.other
- (undocumented)partitioner
- (undocumented)evidence$27
- (undocumented)public DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKey()
groupByKey
to each RDD. Hash partitioning is used to
generate the RDDs with Spark's default number of partitions.public DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKey(int numPartitions)
groupByKey
to each RDD. Hash partitioning is used to
generate the RDDs with numPartitions
partitions.numPartitions
- (undocumented)public DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKey(Partitioner partitioner)
groupByKey
on each RDD. The supplied
org.apache.spark.Partitioner is used to control the partitioning of each RDD.partitioner
- (undocumented)public DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKeyAndWindow(Duration windowDuration)
groupByKey
over a sliding window. This is similar to
DStream.groupByKey()
but applies it over a sliding window. The new DStream generates RDDs
with the same interval as this DStream. Hash partitioning is used to generate the RDDs with
Spark's default number of partitions.windowDuration
- width of the window; must be a multiple of this DStream's
batching intervalpublic DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKeyAndWindow(Duration windowDuration, Duration slideDuration)
groupByKey
over a sliding window. Similar to
DStream.groupByKey()
, but applies it over a sliding window. Hash partitioning is used to
generate the RDDs with Spark's default number of partitions.windowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalpublic DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKeyAndWindow(Duration windowDuration, Duration slideDuration, int numPartitions)
groupByKey
over a sliding window on this
DStream.
Similar to DStream.groupByKey()
, but applies it over a sliding window.
Hash partitioning is used to generate the RDDs with numPartitions
partitions.windowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalnumPartitions
- number of partitions of each RDD in the new DStream; if not specified
then Spark's default number of partitions will be usedpublic DStream<scala.Tuple2<K,scala.collection.Iterable<V>>> groupByKeyAndWindow(Duration windowDuration, Duration slideDuration, Partitioner partitioner)
groupByKey
over a sliding window on this
DStream.
Similar to DStream.groupByKey()
, but applies it over a sliding window.windowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalpartitioner
- partitioner for controlling the partitioning of each RDD in the new
DStream.public <W> DStream<scala.Tuple2<K,scala.Tuple2<V,W>>> join(DStream<scala.Tuple2<K,W>> other, scala.reflect.ClassTag<W> evidence$16)
this
DStream and other
DStream.
Hash partitioning is used to generate the RDDs with Spark's default number of partitions.other
- (undocumented)evidence$16
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<V,W>>> join(DStream<scala.Tuple2<K,W>> other, int numPartitions, scala.reflect.ClassTag<W> evidence$17)
this
DStream and other
DStream.
Hash partitioning is used to generate the RDDs with numPartitions
partitions.other
- (undocumented)numPartitions
- (undocumented)evidence$17
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<V,W>>> join(DStream<scala.Tuple2<K,W>> other, Partitioner partitioner, scala.reflect.ClassTag<W> evidence$18)
this
DStream and other
DStream.
The supplied org.apache.spark.Partitioner is used to control the partitioning of each RDD.other
- (undocumented)partitioner
- (undocumented)evidence$18
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> leftOuterJoin(DStream<scala.Tuple2<K,W>> other, scala.reflect.ClassTag<W> evidence$19)
this
DStream and
other
DStream. Hash partitioning is used to generate the RDDs with Spark's default
number of partitions.other
- (undocumented)evidence$19
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> leftOuterJoin(DStream<scala.Tuple2<K,W>> other, int numPartitions, scala.reflect.ClassTag<W> evidence$20)
this
DStream and
other
DStream. Hash partitioning is used to generate the RDDs with numPartitions
partitions.other
- (undocumented)numPartitions
- (undocumented)evidence$20
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<V,scala.Option<W>>>> leftOuterJoin(DStream<scala.Tuple2<K,W>> other, Partitioner partitioner, scala.reflect.ClassTag<W> evidence$21)
this
DStream and
other
DStream. The supplied org.apache.spark.Partitioner is used to control
the partitioning of each RDD.other
- (undocumented)partitioner
- (undocumented)evidence$21
- (undocumented)public <U> DStream<scala.Tuple2<K,U>> mapValues(scala.Function1<V,U> mapValuesFunc, scala.reflect.ClassTag<U> evidence$11)
mapValuesFunc
- (undocumented)evidence$11
- (undocumented)public <StateType,MappedType> MapWithStateDStream<K,V,StateType,MappedType> mapWithState(StateSpec<K,V,StateType,MappedType> spec, scala.reflect.ClassTag<StateType> evidence$2, scala.reflect.ClassTag<MappedType> evidence$3)
MapWithStateDStream
by applying a function to every key-value element of
this
stream, while maintaining some state data for each unique key. The mapping function
and other specification (e.g. partitioners, timeouts, initial state data, etc.) of this
transformation can be specified using StateSpec
class. The state data is accessible in
as a parameter of type State
in the mapping function.
Example of using mapWithState
:
// A mapping function that maintains an integer state and return a String
def mappingFunction(key: String, value: Option[Int], state: State[Int]): Option[String] = {
// Use state.exists(), state.get(), state.update() and state.remove()
// to manage state, and return the necessary string
}
val spec = StateSpec.function(mappingFunction).numPartitions(10)
val mapWithStateDStream = keyValueDStream.mapWithState[StateType, MappedType](spec)
spec
- Specification of this transformationevidence$2
- (undocumented)evidence$3
- (undocumented)public DStream<scala.Tuple2<K,V>> reduceByKey(scala.Function2<V,V,V> reduceFunc)
reduceByKey
to each RDD. The values for each key are
merged using the associative and commutative reduce function. Hash partitioning is used to
generate the RDDs with Spark's default number of partitions.reduceFunc
- (undocumented)public DStream<scala.Tuple2<K,V>> reduceByKey(scala.Function2<V,V,V> reduceFunc, int numPartitions)
reduceByKey
to each RDD. The values for each key are
merged using the supplied reduce function. Hash partitioning is used to generate the RDDs
with numPartitions
partitions.reduceFunc
- (undocumented)numPartitions
- (undocumented)public DStream<scala.Tuple2<K,V>> reduceByKey(scala.Function2<V,V,V> reduceFunc, Partitioner partitioner)
reduceByKey
to each RDD. The values for each key are
merged using the supplied reduce function. org.apache.spark.Partitioner is used to control
the partitioning of each RDD.reduceFunc
- (undocumented)partitioner
- (undocumented)public DStream<scala.Tuple2<K,V>> reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc, Duration windowDuration)
reduceByKey
over a sliding window on this
DStream.
Similar to DStream.reduceByKey()
, but applies it over a sliding window. The new DStream
generates RDDs with the same interval as this DStream. Hash partitioning is used to generate
the RDDs with Spark's default number of partitions.reduceFunc
- associative and commutative reduce functionwindowDuration
- width of the window; must be a multiple of this DStream's
batching intervalpublic DStream<scala.Tuple2<K,V>> reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc, Duration windowDuration, Duration slideDuration)
reduceByKey
over a sliding window. This is similar to
DStream.reduceByKey()
but applies it over a sliding window. Hash partitioning is used to
generate the RDDs with Spark's default number of partitions.reduceFunc
- associative and commutative reduce functionwindowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalpublic DStream<scala.Tuple2<K,V>> reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc, Duration windowDuration, Duration slideDuration, int numPartitions)
reduceByKey
over a sliding window. This is similar to
DStream.reduceByKey()
but applies it over a sliding window. Hash partitioning is used to
generate the RDDs with numPartitions
partitions.reduceFunc
- associative and commutative reduce functionwindowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalnumPartitions
- number of partitions of each RDD in the new DStream.public DStream<scala.Tuple2<K,V>> reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc, Duration windowDuration, Duration slideDuration, Partitioner partitioner)
reduceByKey
over a sliding window. Similar to
DStream.reduceByKey()
, but applies it over a sliding window.reduceFunc
- associative and commutative reduce functionwindowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalpartitioner
- partitioner for controlling the partitioning of each RDD
in the new DStream.public DStream<scala.Tuple2<K,V>> reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc, scala.Function2<V,V,V> invReduceFunc, Duration windowDuration, Duration slideDuration, int numPartitions, scala.Function1<scala.Tuple2<K,V>,Object> filterFunc)
reduceByKey
over a sliding window.
The reduced value of over a new window is calculated using the old window's reduced value :
1. reduce the new values that entered the window (e.g., adding new counts)
2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)
This is more efficient than reduceByKeyAndWindow without "inverse reduce" function. However, it is applicable to only "invertible reduce functions". Hash partitioning is used to generate the RDDs with Spark's default number of partitions.
reduceFunc
- associative and commutative reduce functioninvReduceFunc
- inverse reduce function; such that for all y, invertible x:
invReduceFunc(reduceFunc(x, y), x) = y
windowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalfilterFunc
- Optional function to filter expired key-value pairs;
only pairs that satisfy the function are retainednumPartitions
- (undocumented)public DStream<scala.Tuple2<K,V>> reduceByKeyAndWindow(scala.Function2<V,V,V> reduceFunc, scala.Function2<V,V,V> invReduceFunc, Duration windowDuration, Duration slideDuration, Partitioner partitioner, scala.Function1<scala.Tuple2<K,V>,Object> filterFunc)
reduceByKey
over a sliding window.
The reduced value of over a new window is calculated using the old window's reduced value :
1. reduce the new values that entered the window (e.g., adding new counts)
2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)
This is more efficient than reduceByKeyAndWindow without "inverse reduce" function.
However, it is applicable to only "invertible reduce functions".reduceFunc
- associative and commutative reduce functioninvReduceFunc
- inverse reduce functionwindowDuration
- width of the window; must be a multiple of this DStream's
batching intervalslideDuration
- sliding interval of the window (i.e., the interval after which
the new DStream will generate RDDs); must be a multiple of this
DStream's batching intervalpartitioner
- partitioner for controlling the partitioning of each RDD in the new
DStream.filterFunc
- Optional function to filter expired key-value pairs;
only pairs that satisfy the function are retainedpublic <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> rightOuterJoin(DStream<scala.Tuple2<K,W>> other, scala.reflect.ClassTag<W> evidence$22)
this
DStream and
other
DStream. Hash partitioning is used to generate the RDDs with Spark's default
number of partitions.other
- (undocumented)evidence$22
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> rightOuterJoin(DStream<scala.Tuple2<K,W>> other, int numPartitions, scala.reflect.ClassTag<W> evidence$23)
this
DStream and
other
DStream. Hash partitioning is used to generate the RDDs with numPartitions
partitions.other
- (undocumented)numPartitions
- (undocumented)evidence$23
- (undocumented)public <W> DStream<scala.Tuple2<K,scala.Tuple2<scala.Option<V>,W>>> rightOuterJoin(DStream<scala.Tuple2<K,W>> other, Partitioner partitioner, scala.reflect.ClassTag<W> evidence$24)
this
DStream and
other
DStream. The supplied org.apache.spark.Partitioner is used to control
the partitioning of each RDD.other
- (undocumented)partitioner
- (undocumented)evidence$24
- (undocumented)public <F extends org.apache.hadoop.mapred.OutputFormat<K,V>> void saveAsHadoopFiles(String prefix, String suffix, scala.reflect.ClassTag<F> fm)
this
DStream as a Hadoop file. The file name at each batch interval
is generated based on prefix
and suffix
: "prefix-TIME_IN_MS.suffix"prefix
- (undocumented)suffix
- (undocumented)fm
- (undocumented)public void saveAsHadoopFiles(String prefix, String suffix, Class<?> keyClass, Class<?> valueClass, Class<? extends org.apache.hadoop.mapred.OutputFormat<?,?>> outputFormatClass, org.apache.hadoop.mapred.JobConf conf)
this
DStream as a Hadoop file. The file name at each batch interval
is generated based on prefix
and suffix
: "prefix-TIME_IN_MS.suffix"prefix
- (undocumented)suffix
- (undocumented)keyClass
- (undocumented)valueClass
- (undocumented)outputFormatClass
- (undocumented)conf
- (undocumented)public <F extends org.apache.hadoop.mapreduce.OutputFormat<K,V>> void saveAsNewAPIHadoopFiles(String prefix, String suffix, scala.reflect.ClassTag<F> fm)
this
DStream as a Hadoop file. The file name at each batch interval is
generated based on prefix
and suffix
: "prefix-TIME_IN_MS.suffix".prefix
- (undocumented)suffix
- (undocumented)fm
- (undocumented)public void saveAsNewAPIHadoopFiles(String prefix, String suffix, Class<?> keyClass, Class<?> valueClass, Class<? extends org.apache.hadoop.mapreduce.OutputFormat<?,?>> outputFormatClass, org.apache.hadoop.conf.Configuration conf)
this
DStream as a Hadoop file. The file name at each batch interval is
generated based on prefix
and suffix
: "prefix-TIME_IN_MS.suffix".prefix
- (undocumented)suffix
- (undocumented)keyClass
- (undocumented)valueClass
- (undocumented)outputFormatClass
- (undocumented)conf
- (undocumented)public <S> DStream<scala.Tuple2<K,S>> updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc, scala.reflect.ClassTag<S> evidence$4)
updateFunc
- State update function. If this
function returns None, then
corresponding state key-value pair will be eliminated.evidence$4
- (undocumented)public <S> DStream<scala.Tuple2<K,S>> updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc, int numPartitions, scala.reflect.ClassTag<S> evidence$5)
numPartitions
partitions.updateFunc
- State update function. If this
function returns None, then
corresponding state key-value pair will be eliminated.numPartitions
- Number of partitions of each RDD in the new DStream.evidence$5
- (undocumented)public <S> DStream<scala.Tuple2<K,S>> updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc, Partitioner partitioner, scala.reflect.ClassTag<S> evidence$6)
Partitioner
is used to control the partitioning of each RDD.updateFunc
- State update function. If this
function returns None, then
corresponding state key-value pair will be eliminated.partitioner
- Partitioner for controlling the partitioning of each RDD in the new
DStream.evidence$6
- (undocumented)public <S> DStream<scala.Tuple2<K,S>> updateStateByKey(scala.Function1<scala.collection.Iterator<scala.Tuple3<K,scala.collection.Seq<V>,scala.Option<S>>>,scala.collection.Iterator<scala.Tuple2<K,S>>> updateFunc, Partitioner partitioner, boolean rememberPartitioner, scala.reflect.ClassTag<S> evidence$7)
Partitioner
is used to control the partitioning of each RDD.updateFunc
- State update function. Note, that this function may generate a different
tuple with a different key than the input key. Therefore keys may be removed
or added in this way. It is up to the developer to decide whether to
remember the partitioner despite the key being changed.partitioner
- Partitioner for controlling the partitioning of each RDD in the new
DStreamrememberPartitioner
- Whether to remember the partitioner object in the generated RDDs.evidence$7
- (undocumented)public <S> DStream<scala.Tuple2<K,S>> updateStateByKey(scala.Function2<scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc, Partitioner partitioner, RDD<scala.Tuple2<K,S>> initialRDD, scala.reflect.ClassTag<S> evidence$8)
updateFunc
- State update function. If this
function returns None, then
corresponding state key-value pair will be eliminated.partitioner
- Partitioner for controlling the partitioning of each RDD in the new
DStream.initialRDD
- initial state value of each key.evidence$8
- (undocumented)public <S> DStream<scala.Tuple2<K,S>> updateStateByKey(scala.Function1<scala.collection.Iterator<scala.Tuple3<K,scala.collection.Seq<V>,scala.Option<S>>>,scala.collection.Iterator<scala.Tuple2<K,S>>> updateFunc, Partitioner partitioner, boolean rememberPartitioner, RDD<scala.Tuple2<K,S>> initialRDD, scala.reflect.ClassTag<S> evidence$9)
updateFunc
- State update function. Note, that this function may generate a different
tuple with a different key than the input key. Therefore keys may be removed
or added in this way. It is up to the developer to decide whether to
remember the partitioner despite the key being changed.partitioner
- Partitioner for controlling the partitioning of each RDD in the new
DStreamrememberPartitioner
- Whether to remember the partitioner object in the generated RDDs.initialRDD
- initial state value of each key.evidence$9
- (undocumented)public <S> DStream<scala.Tuple2<K,S>> updateStateByKey(scala.Function4<Time,K,scala.collection.Seq<V>,scala.Option<S>,scala.Option<S>> updateFunc, Partitioner partitioner, boolean rememberPartitioner, scala.Option<RDD<scala.Tuple2<K,S>>> initialRDD, scala.reflect.ClassTag<S> evidence$10)
updateFunc
- State update function. If this
function returns None, then
corresponding state key-value pair will be eliminated.partitioner
- Partitioner for controlling the partitioning of each RDD in the new
DStream.rememberPartitioner
- (undocumented)initialRDD
- (undocumented)evidence$10
- (undocumented)