group_by {SparkR} | R Documentation |
Groups the SparkDataFrame using the specified columns, so we can run aggregation on them.
group_by(x, ...) groupBy(x, ...) ## S4 method for signature 'SparkDataFrame' groupBy(x, ...) ## S4 method for signature 'SparkDataFrame' group_by(x, ...)
x |
a SparkDataFrame. |
... |
character name(s) or Column(s) to group on. |
A GroupedData.
groupBy since 1.4.0
group_by since 1.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, exceptAll
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, head
,
hint
, histogram
,
insertInto
, intersectAll
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, localCheckpoint
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
rename
, repartitionByRange
,
repartition
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionAll
,
unionByName
, union
,
unpersist
, withColumn
,
withWatermark
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D # Compute the average for all numeric columns grouped by department.
##D avg(groupBy(df, "department"))
##D
##D # Compute the max age and average salary, grouped by department and gender.
##D agg(groupBy(df, "department", "gender"), salary="avg", "age" -> "max")
## End(Not run)