intersectAll {SparkR} | R Documentation |
Return a new SparkDataFrame containing rows in both this SparkDataFrame
and another SparkDataFrame while preserving the duplicates.
This is equivalent to INTERSECT ALL
in SQL. Also as standard in
SQL, this function resolves columns by position (not by name).
intersectAll(x, y) ## S4 method for signature 'SparkDataFrame,SparkDataFrame' intersectAll(x, y)
x |
a SparkDataFrame. |
y |
a SparkDataFrame. |
A SparkDataFrame containing the result of the intersect all operation.
intersectAll since 2.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, alias
,
arrange
, as.data.frame
,
attach,SparkDataFrame-method
,
broadcast
, cache
,
checkpoint
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, cube
,
dapplyCollect
, dapply
,
describe
, dim
,
distinct
, dropDuplicates
,
dropna
, drop
,
dtypes
, exceptAll
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, hint
,
histogram
, insertInto
,
intersect
, isLocal
,
isStreaming
, join
,
limit
, localCheckpoint
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
rename
, repartitionByRange
,
repartition
, rollup
,
sample
, saveAsTable
,
schema
, selectExpr
,
select
, showDF
,
show
, storageLevel
,
str
, subset
,
summary
, take
,
toJSON
, unionAll
,
unionByName
, union
,
unpersist
, withColumn
,
withWatermark
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.stream
,
write.text
## Not run:
##D sparkR.session()
##D df1 <- read.json(path)
##D df2 <- read.json(path2)
##D intersectAllDF <- intersectAll(df1, df2)
## End(Not run)