public final class DataStreamReader
extends Object
implements org.apache.spark.internal.Logging
Dataset
from external storage systems (e.g. file systems,
key-value stores, etc). Use SparkSession.readStream
to access this.
Modifier and Type | Method and Description |
---|---|
Dataset<Row> |
csv(String path)
Loads a CSV file stream and returns the result as a
DataFrame . |
DataStreamReader |
format(String source)
Specifies the input data source format.
|
Dataset<Row> |
json(String path)
Loads a JSON file stream and returns the results as a
DataFrame . |
Dataset<Row> |
load()
Loads input data stream in as a
DataFrame , for data streams that don't require a path
(e.g. |
Dataset<Row> |
load(String path)
Loads input in as a
DataFrame , for data streams that read from some path. |
DataStreamReader |
option(String key,
boolean value)
Adds an input option for the underlying data source.
|
DataStreamReader |
option(String key,
double value)
Adds an input option for the underlying data source.
|
DataStreamReader |
option(String key,
long value)
Adds an input option for the underlying data source.
|
DataStreamReader |
option(String key,
String value)
Adds an input option for the underlying data source.
|
DataStreamReader |
options(scala.collection.Map<String,String> options)
(Scala-specific) Adds input options for the underlying data source.
|
DataStreamReader |
options(java.util.Map<String,String> options)
(Java-specific) Adds input options for the underlying data source.
|
Dataset<Row> |
orc(String path)
Loads a ORC file stream, returning the result as a
DataFrame . |
Dataset<Row> |
parquet(String path)
Loads a Parquet file stream, returning the result as a
DataFrame . |
DataStreamReader |
schema(String schemaString)
Specifies the schema by using the input DDL-formatted string.
|
DataStreamReader |
schema(StructType schema)
Specifies the input schema.
|
Dataset<Row> |
text(String path)
Loads text files and returns a
DataFrame whose schema starts with a string column named
"value", and followed by partitioned columns if there are any. |
Dataset<String> |
textFile(String path)
Loads text file(s) and returns a
Dataset of String. |
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public Dataset<Row> csv(String path)
DataFrame
.
This function will go through the input once to determine the input schema if inferSchema
is enabled. To avoid going through the entire data once, disable inferSchema
option or
specify the schema explicitly using schema
.
You can set the following CSV-specific options to deal with CSV files:
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.sep
(default ,
): sets a single character as a separator for each
field and value.encoding
(default UTF-8
): decodes the CSV files by the given encoding
type.quote
(default "
): sets a single character used for escaping quoted values where
the separator can be part of the value. If you would like to turn off quotations, you need to
set not null
but an empty string. This behaviour is different form
com.databricks.spark.csv
.escape
(default \
): sets a single character used for escaping quotes inside
an already quoted value.charToEscapeQuoteEscaping
(default escape
or \0
): sets a single character used for
escaping the escape for the quote character. The default value is escape character when escape
and quote characters are different, \0
otherwise.comment
(default empty string): sets a single character used for skipping lines
beginning with this character. By default, it is disabled.header
(default false
): uses the first line as names of columns.inferSchema
(default false
): infers the input schema automatically from data. It
requires one extra pass over the data.ignoreLeadingWhiteSpace
(default false
): a flag indicating whether or not leading
whitespaces from values being read should be skipped.ignoreTrailingWhiteSpace
(default false
): a flag indicating whether or not trailing
whitespaces from values being read should be skipped.nullValue
(default empty string): sets the string representation of a null value. Since
2.0.1, this applies to all supported types including the string type.emptyValue
(default empty string): sets the string representation of an empty value.nanValue
(default NaN
): sets the string representation of a non-number" value.positiveInf
(default Inf
): sets the string representation of a positive infinity
value.negativeInf
(default -Inf
): sets the string representation of a negative infinity
value.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at
Datetime Patterns.
This applies to date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
Datetime Patterns.
This applies to timestamp type.maxColumns
(default 20480
): defines a hard limit of how many columns
a record can have.maxCharsPerColumn
(default -1
): defines the maximum number of characters allowed
for any given value being read. By default, it is -1 meaning unlimited lengthmode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing. It supports the following case-insensitive modes.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets malformed fields to null
.
To keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have
the field, it drops corrupt records during parsing. A record with less/more tokens
than schema is not a corrupted record to CSV. When it meets a record having fewer
tokens than the length of the schema, sets null
to extra fields. When the record
has more tokens than the length of the schema, it drops extra tokens.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.multiLine
(default false
): parse one record, which may span multiple lines.locale
(default is en-US
): sets a locale as language tag in IETF BCP 47 format.
For instance, this is used while parsing dates and timestamps.lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing. Maximum length is 1 character.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypath
- (undocumented)public DataStreamReader format(String source)
source
- (undocumented)public Dataset<Row> json(String path)
DataFrame
.
JSON Lines (newline-delimited JSON) is supported by
default. For JSON (one record per file), set the multiLine
option to true.
This function goes through the input once to determine the input schema. If you know the schema in advance, use the version that specifies the schema to avoid the extra scan.
You can set the following JSON-specific options to deal with non-standard JSON files:
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.primitivesAsString
(default false
): infers all primitive values as a string typeprefersDecimal
(default false
): infers all floating-point values as a decimal
type. If the values do not fit in decimal, then it infers them as doubles.allowComments
(default false
): ignores Java/C++ style comment in JSON recordsallowUnquotedFieldNames
(default false
): allows unquoted JSON field namesallowSingleQuotes
(default true
): allows single quotes in addition to double quotes
allowNumericLeadingZeros
(default false
): allows leading zeros in numbers
(e.g. 00012)allowBackslashEscapingAnyCharacter
(default false
): allows accepting quoting of all
character using backslash quoting mechanismallowUnquotedControlChars
(default false
): allows JSON Strings to contain unquoted
control characters (ASCII characters with value less than 32, including tab and line feed
characters) or not.mode
(default PERMISSIVE
): allows a mode for dealing with corrupt records
during parsing.
PERMISSIVE
: when it meets a corrupted record, puts the malformed string into a
field configured by columnNameOfCorruptRecord
, and sets malformed fields to null
. To
keep corrupt records, an user can set a string type field named
columnNameOfCorruptRecord
in an user-defined schema. If a schema does not have the
field, it drops corrupt records during parsing. When inferring a schema, it implicitly
adds a columnNameOfCorruptRecord
field in an output schema.DROPMALFORMED
: ignores the whole corrupted records.FAILFAST
: throws an exception when it meets corrupted records.columnNameOfCorruptRecord
(default is the value specified in
spark.sql.columnNameOfCorruptRecord
): allows renaming the new field having malformed string
created by PERMISSIVE
mode. This overrides spark.sql.columnNameOfCorruptRecord
.dateFormat
(default yyyy-MM-dd
): sets the string that indicates a date format.
Custom date formats follow the formats at
Datetime Patterns.
This applies to date type.timestampFormat
(default yyyy-MM-dd'T'HH:mm:ss[.SSS][XXX]
): sets the string that
indicates a timestamp format. Custom date formats follow the formats at
Datetime Patterns.
This applies to timestamp type.multiLine
(default false
): parse one record, which may span multiple lines,
per filelineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing.dropFieldIfAllNull
(default false
): whether to ignore column of all null values or
empty array/struct during schema inference.locale
(default is en-US
): sets a locale as language tag in IETF BCP 47 format.
For instance, this is used while parsing dates and timestamps.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypath
- (undocumented)public Dataset<Row> load()
DataFrame
, for data streams that don't require a path
(e.g. external key-value stores).
public Dataset<Row> load(String path)
DataFrame
, for data streams that read from some path.
path
- (undocumented)public DataStreamReader option(String key, String value)
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a time zone ID
to be used to parse timestamps in the JSON/CSV datasources or partition values. The following
formats of timeZone
are supported:
spark.sql.session.timeZone
is
used by default.
key
- (undocumented)value
- (undocumented)public DataStreamReader option(String key, boolean value)
key
- (undocumented)value
- (undocumented)public DataStreamReader option(String key, long value)
key
- (undocumented)value
- (undocumented)public DataStreamReader option(String key, double value)
key
- (undocumented)value
- (undocumented)public DataStreamReader options(scala.collection.Map<String,String> options)
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a time zone ID
to be used to parse timestamps in the JSON/CSV datasources or partition values. The following
formats of timeZone
are supported:
spark.sql.session.timeZone
is
used by default.
options
- (undocumented)public DataStreamReader options(java.util.Map<String,String> options)
You can set the following option(s):
timeZone
(default session local timezone): sets the string that indicates a time zone ID
to be used to parse timestamps in the JSON/CSV datasources or partition values. The following
formats of timeZone
are supported:
spark.sql.session.timeZone
is
used by default.
options
- (undocumented)public Dataset<Row> orc(String path)
DataFrame
.
You can set the following ORC-specific option(s) for reading ORC files:
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.mergeSchema
(default is the value specified in spark.sql.orc.mergeSchema
): sets whether
we should merge schemas collected from all ORC part-files. This will override
spark.sql.orc.mergeSchema
.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypath
- (undocumented)public Dataset<Row> parquet(String path)
DataFrame
.
You can set the following Parquet-specific option(s) for reading Parquet files:
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.mergeSchema
(default is the value specified in spark.sql.parquet.mergeSchema
): sets
whether we should merge schemas collected from all
Parquet part-files. This will override
spark.sql.parquet.mergeSchema
.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypath
- (undocumented)public DataStreamReader schema(StructType schema)
schema
- (undocumented)public DataStreamReader schema(String schemaString)
schemaString
- (undocumented)public Dataset<Row> text(String path)
DataFrame
whose schema starts with a string column named
"value", and followed by partitioned columns if there are any.
The text files must be encoded as UTF-8.
By default, each line in the text files is a new row in the resulting DataFrame. For example:
// Scala:
spark.readStream.text("/path/to/directory/")
// Java:
spark.readStream().text("/path/to/directory/")
You can set the following text-specific options to deal with text files:
maxFilesPerTrigger
(default: no max limit): sets the maximum number of new files to be
considered in every trigger.wholetext
(default false
): If true, read a file as a single row and not split by "\n".
lineSep
(default covers all \r
, \r\n
and \n
): defines the line separator
that should be used for parsing.pathGlobFilter
: an optional glob pattern to only include files with paths matching
the pattern. The syntax follows org.apache.hadoop.fs.GlobFilter
.
It does not change the behavior of partition discovery.recursiveFileLookup
: recursively scan a directory for files. Using this option
disables partition discoverypath
- (undocumented)public Dataset<String> textFile(String path)
Dataset
of String. The underlying schema of the Dataset
contains a single string column named "value".
The text files must be encoded as UTF-8.
If the directory structure of the text files contains partitioning information, those are
ignored in the resulting Dataset. To include partitioning information as columns, use text
.
By default, each line in the text file is a new element in the resulting Dataset. For example:
// Scala:
spark.readStream.textFile("/path/to/spark/README.md")
// Java:
spark.readStream().textFile("/path/to/spark/README.md")
You can set the text-specific options as specified in DataStreamReader.text
.
path
- input path