pyspark.sql.DataFrame.repartitionByRange¶
-
DataFrame.
repartitionByRange
(numPartitions, *cols)[source]¶ Returns a new
DataFrame
partitioned by the given partitioning expressions. The resultingDataFrame
is range partitioned.At least one partition-by expression must be specified. When no explicit sort order is specified, “ascending nulls first” is assumed.
New in version 2.4.0.
- Parameters
- numPartitionsint
can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used.
- colsstr or
Column
partitioning columns.
Notes
Due to performance reasons this method uses sampling to estimate the ranges. Hence, the output may not be consistent, since sampling can return different values. The sample size can be controlled by the config spark.sql.execution.rangeExchange.sampleSizePerPartition.
Examples
>>> df.repartitionByRange(2, "age").rdd.getNumPartitions() 2 >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+ >>> df.repartitionByRange(1, "age").rdd.getNumPartitions() 1 >>> data = df.repartitionByRange("age") >>> df.show() +---+-----+ |age| name| +---+-----+ | 2|Alice| | 5| Bob| +---+-----+