pyspark.pandas.extensions.register_series_accessor¶
-
pyspark.pandas.extensions.
register_series_accessor
(name: str) → Callable[[Type[T]], Type[T]][source]¶ Register a custom accessor with a Series object
- Parameters
- namestr
name used when calling the accessor after its registered
- Returns
- callable
A class decorator.
See also
register_dataframe_accessor
Register a custom accessor on DataFrame objects
register_index_accessor
Register a custom accessor on Index objects
Notes
When accessed, your accessor will be initialiazed with the pandas-on-Spark object the user is interacting with. The code signature must be:
def __init__(self, pandas_on_spark_obj): # constructor logic ...
In the pandas API, if data passed to your accessor has an incorrect dtype, it’s recommended to raise an
AttributeError
for consistency purposes. In pandas-on-Spark,ValueError
is more frequently used to annotate when a value’s datatype is unexpected for a given method/function.Ultimately, you can structure this however you like, but pandas-on-Spark would likely do something like this:
>>> ps.Series(['a', 'b']).dt ... Traceback (most recent call last): ... ValueError: Cannot call DatetimeMethods on type StringType
Examples
In your library code:
from pyspark.pandas.extensions import register_series_accessor @register_series_accessor("geo") class GeoAccessor: def __init__(self, pandas_on_spark_obj): self._obj = pandas_on_spark_obj @property def is_valid(self): # boolean check to see if series contains valid geometry return True
Then, in an ipython session:
>>> ## Import if the accessor is in the other file. >>> # from my_ext_lib import GeoAccessor >>> psdf = ps.DataFrame({"longitude": np.linspace(0,10), ... "latitude": np.linspace(0, 20)}) >>> psdf.longitude.geo.is_valid True