FeaturesType
- Type of features.
E.g., VectorUDT
for vector features.Learner
- Specialization of this class. If you subclass this type, use this type
parameter to specify the concrete type.M
- Specialization of PredictionModel
. If you subclass this type, use this type
parameter to specify the concrete type for the corresponding model.public abstract class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>> extends Estimator<M> implements PredictorParams
fit()
. If this predictor supports
weights, it accepts all NumericType weights, which will be automatically casted to DoubleType
in fit()
.
Constructor and Description |
---|
Predictor() |
Modifier and Type | Method and Description |
---|---|
abstract Learner |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
featuresCol()
Param for features column name.
|
M |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
Param<String> |
labelCol()
Param for label column name.
|
Param<String> |
predictionCol()
Param for prediction column name.
|
Learner |
setFeaturesCol(String value) |
Learner |
setLabelCol(String value) |
Learner |
setPredictionCol(String value) |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
params
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
extractInstances, extractInstances, validateAndTransformSchema
getLabelCol
getFeaturesCol
getPredictionCol
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString, uid
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public abstract Learner copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<M extends PredictionModel<FeaturesType,M>>
extra
- (undocumented)public final Param<String> featuresCol()
HasFeaturesCol
featuresCol
in interface HasFeaturesCol
public M fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<M extends PredictionModel<FeaturesType,M>>
dataset
- (undocumented)public final Param<String> labelCol()
HasLabelCol
labelCol
in interface HasLabelCol
public final Param<String> predictionCol()
HasPredictionCol
predictionCol
in interface HasPredictionCol
public Learner setFeaturesCol(String value)
public Learner setLabelCol(String value)
public Learner setPredictionCol(String value)
public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)