Packages

class FMClassifier extends ProbabilisticClassifier[Vector, FMClassifier, FMClassificationModel] with FactorizationMachines with FMClassifierParams with DefaultParamsWritable with Logging

Factorization Machines learning algorithm for classification. It supports normal gradient descent and AdamW solver.

The implementation is based upon: S. Rendle. "Factorization machines" 2010.

FM is able to estimate interactions even in problems with huge sparsity (like advertising and recommendation system). FM formula is:

$$ \begin{align} y = \sigma\left( w_0 + \sum\limits^n_{i-1} w_i x_i + \sum\limits^n_{i=1} \sum\limits^n_{j=i+1} \langle v_i, v_j \rangle x_i x_j \right) \end{align} $$
First two terms denote global bias and linear term (as same as linear regression), and last term denotes pairwise interactions term. v_i describes the i-th variable with k factors.

FM classification model uses logistic loss which can be solved by gradient descent method, and regularization terms like L2 are usually added to the loss function to prevent overfitting.

Annotations
@Since( "3.0.0" )
Source
FMClassifier.scala
Note

Multiclass labels are not currently supported.

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. FMClassifier
  2. DefaultParamsWritable
  3. MLWritable
  4. FMClassifierParams
  5. FactorizationMachines
  6. FactorizationMachinesParams
  7. HasWeightCol
  8. HasRegParam
  9. HasFitIntercept
  10. HasSeed
  11. HasSolver
  12. HasTol
  13. HasStepSize
  14. HasMaxIter
  15. ProbabilisticClassifier
  16. ProbabilisticClassifierParams
  17. HasThresholds
  18. HasProbabilityCol
  19. Classifier
  20. ClassifierParams
  21. HasRawPredictionCol
  22. Predictor
  23. PredictorParams
  24. HasPredictionCol
  25. HasFeaturesCol
  26. HasLabelCol
  27. Estimator
  28. PipelineStage
  29. Logging
  30. Params
  31. Serializable
  32. Serializable
  33. Identifiable
  34. AnyRef
  35. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new FMClassifier()
    Annotations
    @Since( "3.0.0" )
  2. new FMClassifier(uid: String)
    Annotations
    @Since( "3.0.0" )

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  6. final def clear(param: Param[_]): FMClassifier.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  7. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  8. def copy(extra: ParamMap): FMClassifier

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    FMClassifierPredictorEstimatorPipelineStageParams
    Annotations
    @Since( "3.0.0" )
  9. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  10. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  11. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  12. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  13. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  14. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  15. def extractInstances(dataset: Dataset[_], numClasses: Int): RDD[Instance]

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validates the label on the classifier is a valid integer in the range [0, numClasses).

    Attributes
    protected
    Definition Classes
    ClassifierParams
  16. def extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types. Validate the output instances with the given function.

    Attributes
    protected
    Definition Classes
    PredictorParams
  17. def extractInstances(dataset: Dataset[_]): RDD[Instance]

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol, weightCol(if any) and featuresCol from the given dataset, and put it in an RDD with strong types.

    Attributes
    protected
    Definition Classes
    PredictorParams
  18. def extractLabeledPoints(dataset: Dataset[_], numClasses: Int): RDD[LabeledPoint]

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    dataset

    DataFrame with columns for labels (org.apache.spark.sql.types.NumericType) and features (Vector).

    numClasses

    Number of classes label can take. Labels must be integers in the range [0, numClasses).

    Attributes
    protected
    Definition Classes
    Classifier
    Note

    Throws SparkException if any label is a non-integer or is negative

  19. def extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    Extract labelCol and featuresCol from the given dataset, and put it in an RDD with strong types.

    Attributes
    protected
    Definition Classes
    Predictor
  20. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  21. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  22. final val factorSize: IntParam

    Param for dimensionality of the factors (>= 0)

    Param for dimensionality of the factors (>= 0)

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  23. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  24. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  25. def fit(dataset: Dataset[_]): FMClassificationModel

    Fits a model to the input data.

    Fits a model to the input data.

    Definition Classes
    PredictorEstimator
  26. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[FMClassificationModel]

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  27. def fit(dataset: Dataset[_], paramMap: ParamMap): FMClassificationModel

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    Parameter map. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  28. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): FMClassificationModel

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    firstParamPair

    the first param pair, overrides embedded params

    otherParamPairs

    other param pairs. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  29. final val fitIntercept: BooleanParam

    Param for whether to fit an intercept term.

    Param for whether to fit an intercept term.

    Definition Classes
    HasFitIntercept
  30. final val fitLinear: BooleanParam

    Param for whether to fit linear term (aka 1-way term)

    Param for whether to fit linear term (aka 1-way term)

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  31. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  32. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  33. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  34. final def getFactorSize: Int

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  35. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  36. final def getFitIntercept: Boolean

    Definition Classes
    HasFitIntercept
  37. final def getFitLinear: Boolean

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  38. final def getInitStd: Double

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  39. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  40. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  41. final def getMiniBatchFraction: Double

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  42. def getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int

    Get the number of classes.

    Get the number of classes. This looks in column metadata first, and if that is missing, then this assumes classes are indexed 0,1,...,numClasses-1 and computes numClasses by finding the maximum label value.

    Label validation (ensuring all labels are integers >= 0) needs to be handled elsewhere, such as in extractLabeledPoints().

    dataset

    Dataset which contains a column labelCol

    maxNumClasses

    Maximum number of classes allowed when inferred from data. If numClasses is specified in the metadata, then maxNumClasses is ignored.

    returns

    number of classes

    Attributes
    protected
    Definition Classes
    Classifier
    Exceptions thrown

    IllegalArgumentException if metadata does not specify numClasses, and the actual numClasses exceeds maxNumClasses

  43. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  44. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  45. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  46. final def getProbabilityCol: String

    Definition Classes
    HasProbabilityCol
  47. final def getRawPredictionCol: String

    Definition Classes
    HasRawPredictionCol
  48. final def getRegParam: Double

    Definition Classes
    HasRegParam
  49. final def getSeed: Long

    Definition Classes
    HasSeed
  50. final def getSolver: String

    Definition Classes
    HasSolver
  51. final def getStepSize: Double

    Definition Classes
    HasStepSize
  52. def getThresholds: Array[Double]

    Definition Classes
    HasThresholds
  53. final def getTol: Double

    Definition Classes
    HasTol
  54. final def getWeightCol: String

    Definition Classes
    HasWeightCol
  55. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  56. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  57. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  58. final val initStd: DoubleParam

    Param for standard deviation of initial coefficients

    Param for standard deviation of initial coefficients

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  59. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  60. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  61. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  62. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  63. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  64. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  65. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  66. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  67. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  68. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  69. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  70. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  74. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  77. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  79. final val miniBatchFraction: DoubleParam

    Param for mini-batch fraction, must be in range (0, 1]

    Param for mini-batch fraction, must be in range (0, 1]

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  80. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  81. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  82. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  83. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  84. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  85. final val probabilityCol: Param[String]

    Param for Column name for predicted class conditional probabilities.

    Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.

    Definition Classes
    HasProbabilityCol
  86. final val rawPredictionCol: Param[String]

    Param for raw prediction (a.k.a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  87. final val regParam: DoubleParam

    Param for regularization parameter (>= 0).

    Param for regularization parameter (>= 0).

    Definition Classes
    HasRegParam
  88. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  89. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  90. final def set(paramPair: ParamPair[_]): FMClassifier.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  91. final def set(param: String, value: Any): FMClassifier.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  92. final def set[T](param: Param[T], value: T): FMClassifier.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  93. final def setDefault(paramPairs: ParamPair[_]*): FMClassifier.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  94. final def setDefault[T](param: Param[T], value: T): FMClassifier.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected
    Definition Classes
    Params
  95. def setFactorSize(value: Int): FMClassifier.this.type

    Set the dimensionality of the factors.

    Set the dimensionality of the factors. Default is 8.

    Annotations
    @Since( "3.0.0" )
  96. def setFeaturesCol(value: String): FMClassifier

    Definition Classes
    Predictor
  97. def setFitIntercept(value: Boolean): FMClassifier.this.type

    Set whether to fit intercept term.

    Set whether to fit intercept term. Default is true.

    Annotations
    @Since( "3.0.0" )
  98. def setFitLinear(value: Boolean): FMClassifier.this.type

    Set whether to fit linear term.

    Set whether to fit linear term. Default is true.

    Annotations
    @Since( "3.0.0" )
  99. def setInitStd(value: Double): FMClassifier.this.type

    Set the standard deviation of initial coefficients.

    Set the standard deviation of initial coefficients. Default is 0.01.

    Annotations
    @Since( "3.0.0" )
  100. def setLabelCol(value: String): FMClassifier

    Definition Classes
    Predictor
  101. def setMaxIter(value: Int): FMClassifier.this.type

    Set the maximum number of iterations.

    Set the maximum number of iterations. Default is 100.

    Annotations
    @Since( "3.0.0" )
  102. def setMiniBatchFraction(value: Double): FMClassifier.this.type

    Set the mini-batch fraction parameter.

    Set the mini-batch fraction parameter. Default is 1.0.

    Annotations
    @Since( "3.0.0" )
  103. def setPredictionCol(value: String): FMClassifier

    Definition Classes
    Predictor
  104. def setProbabilityCol(value: String): FMClassifier

    Definition Classes
    ProbabilisticClassifier
  105. def setRawPredictionCol(value: String): FMClassifier

    Definition Classes
    Classifier
  106. def setRegParam(value: Double): FMClassifier.this.type

    Set the L2 regularization parameter.

    Set the L2 regularization parameter. Default is 0.0.

    Annotations
    @Since( "3.0.0" )
  107. def setSeed(value: Long): FMClassifier.this.type

    Set the random seed for weight initialization.

    Set the random seed for weight initialization.

    Annotations
    @Since( "3.0.0" )
  108. def setSolver(value: String): FMClassifier.this.type

    Set the solver algorithm used for optimization.

    Set the solver algorithm used for optimization. Supported options: "gd", "adamW". Default: "adamW"

    Annotations
    @Since( "3.0.0" )
  109. def setStepSize(value: Double): FMClassifier.this.type

    Set the initial step size for the first step (like learning rate).

    Set the initial step size for the first step (like learning rate). Default is 1.0.

    Annotations
    @Since( "3.0.0" )
  110. def setThresholds(value: Array[Double]): FMClassifier

    Definition Classes
    ProbabilisticClassifier
  111. def setTol(value: Double): FMClassifier.this.type

    Set the convergence tolerance of iterations.

    Set the convergence tolerance of iterations. Default is 1E-6.

    Annotations
    @Since( "3.0.0" )
  112. final val solver: Param[String]

    The solver algorithm for optimization.

    The solver algorithm for optimization. Supported options: "gd", "adamW". Default: "adamW"

    Definition Classes
    FactorizationMachinesParams → HasSolver
    Annotations
    @Since( "3.0.0" )
  113. val stepSize: DoubleParam

    Param for Step size to be used for each iteration of optimization (> 0).

    Param for Step size to be used for each iteration of optimization (> 0).

    Definition Classes
    HasStepSize
  114. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  115. val thresholds: DoubleArrayParam

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class.

    Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.

    Definition Classes
    HasThresholds
  116. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  117. final val tol: DoubleParam

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Definition Classes
    HasTol
  118. def train(dataset: Dataset[_]): FMClassificationModel

    Train a model using the given dataset and parameters.

    Train a model using the given dataset and parameters. Developers can implement this instead of fit() to avoid dealing with schema validation and copying parameters into the model.

    dataset

    Training dataset

    returns

    Fitted model

    Attributes
    protected
    Definition Classes
    FMClassifierPredictor
  119. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    PredictorPipelineStage
  120. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  121. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    FMClassifierIdentifiable
    Annotations
    @Since( "3.0.0" )
  122. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    ProbabilisticClassifierParams → ClassifierParams → PredictorParams
  123. def validateLabel(label: Double, numClasses: Int): Unit

    Validates the label on the classifier is a valid integer in the range [0, numClasses).

    Validates the label on the classifier is a valid integer in the range [0, numClasses).

    label

    The label to validate.

    numClasses

    Number of classes label can take. Labels must be integers in the range [0, numClasses).

    Attributes
    protected
    Definition Classes
    Classifier
  124. def validateNumClasses(numClasses: Int): Unit

    Validates that number of classes is greater than zero.

    Validates that number of classes is greater than zero.

    numClasses

    Number of classes label can take.

    Attributes
    protected
    Definition Classes
    Classifier
  125. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  126. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  127. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  128. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol
  129. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DefaultParamsWritableMLWritable

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from FMClassifierParams

Inherited from FactorizationMachines

Inherited from FactorizationMachinesParams

Inherited from HasWeightCol

Inherited from HasRegParam

Inherited from HasFitIntercept

Inherited from HasSeed

Inherited from HasSolver

Inherited from HasTol

Inherited from HasStepSize

Inherited from HasMaxIter

Inherited from ProbabilisticClassifierParams

Inherited from HasThresholds

Inherited from HasProbabilityCol

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters